ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΛΕΤΗ ΨΥΚΤΙΚΩΝ ΦΟΡΤΙΩΝ ΚΑΙ ΕΞΟΠΛΙΣΜΟΥ ΠΑΡΑΓΩΓΗΣ ΨΥΧΗΣ ΜΙΚΡΟΜΕΣΑΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΥΠΟΠΟΙΗΣΗΣ ΚΡΕΑΤΟΣ

COOLING LOADS CALCULATION AND COOLING EQUIPMENT DETERMINATION FOR A SMALL-MEDIUM ENTERPRISE OF MEAT STANDARDIZATION

ΕΠΙΒΛΕΠΩΝ: SUPERVISOR:
Κατσαπρακάκης Δημήτρης Katsaparakakis Dimitris
Καθηγητής Α.Τ.Ε.Ι. ΚΡΗΤΗΣ Professor A.T.E.I. of CRETE

ΣΠΥΡΟΠΟΥΛΟΣ Ι. ΧΡΗΣΤΟΣ
SPYROPOULOS I. CHRISTOS

ΗΡΑΚΛΕΙΟ, ΔΕΚΕΜΒΡΙΟΣ 2018
Περιεχόμενα

ΕΙΣΑΓΩΓΗ ... 4

INTRODUCTION ... 5

ΚΕΦΑΛΑΙΟ 1ο – ΙΔΙΟΤΗΤΕΣ ΤΡΟΦΙΜΩΝ .. 6

1.1 Γενικά ... 6

1.2 Θερμικές ιδιότητες τροφίμων .. 7

1.2.1 Αρχικό σημείο στερεοποίησης - (Initial Freezing Point) ... 7

1.2.2 Περιεκτικότητα σε νερό-υγρασία - (Water content) ... 7

1.2.3 Ειδική θερμοχωρητικότητα - (Specific heat) ... 7

ΚΕΦΑΛΑΙΟ 2ο – ΧΡΟΝΟΣ ΚΑΤΑΨΥΞΗΣ ΤΡΟΦΙΜΩΝ ... 9

2.1 Γενικά ... 9

2.2 Υπολογισμός χρόνου κατάψυξης ... 10

2.2.1 Μέθοδος υπολογισμού παραγόντων P και R για την κατάψυξη ... 11

ΚΕΦΑΛΑΙΟ 3ο – ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΙΔΗ ΨΥΧΤΙΚΩΝ ΜΟΝΑΔΩΝ ... 13

3.1 Εισαγωγή ... 13

3.2 Συστήματα ψύξης .. 14

3.2.1 Επιλογή ψυκτικού μέσου .. 14

3.2.2 Επιλογή μονάδας ψύξης ... 14

3.2.3 Απόψυξη μονάδων fan-coil .. 15

3.2.4 Συμπιεστές ... 15

ΚΕΦΑΛΑΙΟ 4ο – ΚΑΤΗΓΟΡΙΕΣ ΚΑΙ ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΣΥΝΤΗΡΗΣΗΣ ΤΩΝ ΠΡΟΪΟΝΤΩΝ ... 17

4.1 Προϊόντα κόκκινου κρέατος ... 17

4.1.1 Γενικά ... 17

4.1.2 Υγιεινή ... 17

4.1.3 Ψύξη και κατάψυξη κρεάτων ... 18

4.2 Προϊόντα πουλερικών ... 19

4.2.1 Γενικά ... 19

4.2.2 Ψύξη πουλερικών ... 19

4.2.3 Κατάψυξη πουλερικών ... 20

4.2.4 Απολύμανση πουλερικών ... 20

ΚΕΦΑΛΑΙΟ 5ο – ΨΥΧΤΙΚΑ ΦΟΡΤΙΑ ΘΑΛΑΜΩΝ ... 21

5.1 Εισαγωγή ... 21
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

5.2 Ψυκτικά φορτία .. 21

5.2.1 Φορτίο ψύξης του χώρου - (Transmission load) ... 21

5.2.2 Φορτίο ψύξης ή κατάψυξης προϊόντων - (Product load) .. 25

5.2.3 Ψυκτικό φορτίο εσωτερικής λειτουργίας - (Internal load) .. 27

5.2.4 Ψυκτικό φορτίο εναλλαγών αέρα .. 28

5.2.5 Ψυκτικό φορτίο που σχετίζεται με τον εξοπλισμό ... 29

5.3 Συντελεστής ασφαλείας .. 29

ΚΕΦΑΛΑΙΟ 6ο – ΜΕΛΕΤΗ ΨΥΓΕΙΩΝ ΣΥΝΤΗΡΗΣΗΣ ΚΑΙ ΚΑΤΑΨΥΞΗΣ ΠΡΟΪΟΝΤΩΝ .. 30

6.1 Περιγραφή ... 30

6.2 Μελέτη ψυκτικών θαλάμων ... 30

6.2.1 Θάλαμος 1ος Νωπά χοιρινά ... 30

6.2.2 Θάλαμος 2ος Χώρος επεξεργασίας χοιρινών .. 34

6.2.3 Θάλαμος 3ος Νωπά κοτόπουλα ... 37

6.2.4 Θάλαμος 4ος Χώρος επεξεργασίας κοτόπουλων ... 39

6.2.5 Θάλαμος 5ος Μαρινάρισμα γύρων ... 42

6.2.6 Θάλαμος 6ος Χώρος παρασκευής γύρων .. 45

6.2.7 Θάλαμος 7ος Φόρμες σουβλάκια .. 48

6.2.8 Θάλαμος 8ος Χώρος κοπής και συσκευασίας σουβλακίων ... 52

6.2.9 Θάλαμος 9ος Τούνελ (Βαθειά Κατάψυξη) ... 55

6.2.10 Θάλαμος 10ος Κατάψυξη έτοιμων ... 60

6.2.11 Θάλαμος 11ος Συντήρηση έτοιμων συσκευασμένων χοιρινών 63

6.2.12 Θάλαμος 12ος Συντήρηση έτοιμων συσκευασμένων κοτόπουλων 66

6.2.13 Θάλαμος 13ος Διάδρομος ... 69

6.3 Πίνακας αποτελεσμάτων των φορτίων που προκύπτουν .. 73

ΚΕΦΑΛΑΙΟ 7ο – ΕΠΙΛΟΓΗ ΣΥΜΠΙΕΣΤΩΝ, ΣΥΜΠΥΚΝΩΤΩΝ ΚΑΙ ΕΞΑΤΜΙΣΤΩΝ ... 74

7.1 Μηχανοστάσιο Τούνελ .. 75

7.1.1 Συμπιεστής (Soft Starter) ... 76

7.1.2 Εξατμιστής .. 78

7.1.3 Συμπυκνωτής ... 80

7.2 Μηχανοστάσιο Κατάψυξης ... 83

7.2.1 Συμπιεστές (Soft Starter) ... 84

7.2.2 Εξατμιστής .. 86
7.2.3 Συμπυκνωτής ... 88
7.3 Μηχανοστάσιο Συντηρήσεων ... 90
 7.3.1 Συμπιεστές (ο 1ος inverter) .. 91
 7.3.2 Εξατμιστές .. 93
 7.3.3 Συμπυκνωτής .. 96
7.4 Μηχανοστάσιο Κλιματισμού .. 98
 7.4.1 Συμπιεστές (ο 1ος inverter) .. 99
 7.4.2 Εξατμιστές .. 101
 7.4.3 Συμπυκνωτής .. 104
7.5 Μηνιαίες καταναλώσεις .. 106
ΣΥΜΠΕΡΑΣΜΑΤΑ .. 107
ΒΙΒΛΙΟΓΡΑΦΙΑ .. 108
ΠΙΝΑΚΕΣ .. 109
ΚΑΤΟΨΗ ΘΑΛΑΜΩΝ .. 113
ΕΙΣΑΓΩΓΗ

Σκοπός της παρούσας διπλωματικής εργασίας είναι η εξοικείωση των φοιτητών με τον τομέα της βιομηχανικής ψύξης των κρεάτων. Τα ελληνικά κρέατα έχουν πολύ καλή ποιότητα. Ωστόσο, κάτι τέτοιο απαιτεί σωστή διαχείριση και επεξεργασία, όπως επίσης και ασφαλή συντήρηση των κρεάτων σε ψυκτικούς θαλάμους. Αυτό, λοιπόν, είναι το περιεχόμενο που πραγματεύεται η παρούσα εργασία, με τους σωστούς υπολογισμούς των φορτίων καθώς και την σωστή επεξεργασία των μηχανισμών ψύξης στην αγορά.

Στο 1ο κεφάλαιο παρουσιάζονται οι θερμικές ιδιότητες της λίστας των κρεάτων που παρέχεται από την ASHRAE (American Society of Heating, Refrigerating and Air Conditioning). Παρουσιάζεται η σύσταση των κρεάτων.

Στο 2ο κεφάλαιο υπολογίζονται οι χρόνοι που απαιτούνται ώστε ένα προϊόν να καταψυχθεί. Για τη διαδικασία αυτή χρησιμοποιείται ένας συγκεκριμένος τύπος και παρουσιάζεται κατά βήματα η διαδικασία υπολογισμού.

Στο 3ο κεφάλαιο αναλύονται οι ψυκτικοί θάλαμοι αλλά και οι μέθοδοι ψύξης που χρησιμοποιούνται. Παρουσιάζονται τα κριτήρια που λαμβάνονται υπόψη κατά το σχεδιασμό ενός θαλάμου. Εν συνεχεία, παρουσιάζονται τα συστήματα ψύξης και καταψύξης, που χρησιμοποιούνται κυρίως στις βιομηχανίες των κρεάτων, καθώς και το πώς λειτουργούν.

Στο 4ο κεφάλαιο παρουσιάζονται οι ιδιαιτερότητες των προϊόντων του κόκκινου κρέατος και των πουλερικών που πρέπει να ληφθούν υπόψη κατά τη συντήρησή τους. Επίσης, παρουσιάζεται η μέθοδος ψύξης και η προτιμώμενη συνθήκη παραλαβής, παραγωγής και αποθήκευσης.

Στο 5ο κεφάλαιο γίνεται αναφορά στα ψυκτικά φορτία που απαιτούνται, ώστε να επιτυγχάνεται η επιθυμητή αποθήκευση των κρέατων. Τα φορτία αυτά καλούνται να αντιμετωπίσουν το θερμικό κέρδος λόγω των εσωτερικών πηγών θερμότητας και των εναλλαγών αέρα. Αναφέρονται επίσης, στην ψύξη του χώρου και την απορρόφηση της θερμότητας από τα προϊόντα, ώστε αυτά να αποκτήσουν την τελική θερμοκρασία συντήρησής τους.

Στο 6ο κεφάλαιο παρουσιάζεται μία μελέτη μιας μονάδας παραγωγής αποθήκευσης κρέατος. Πιο συγκεκριμένα, η εγκατάσταση αποτελείται από πολυδύναμους ψυκτικούς θαλάμους, στους οποίους επεξεργάζονται και καταψύχονται προϊόντα κρέατος. Η εγκατάσταση τοποθετείται στην περιοχή της Αργολίδας στην Πελοπόννησο και τα κρέατα που αποθηκεύονται προέρχονται από τη γύρω περιοχή.

Στο 7ο κεφάλαιο γίνεται ο υπολογισμός των συμπιεστών που απαιτούνται, τον εξατμιστών που θα τοποθετήσουμε σε κάθε θάλαμο και των συμπυκνωτών θα χρειαστούν για να αποβάλουν την θερμότητα προς το περιβάλλον. Επίσης έχει γίνει υπολογισμός των μηχανιών καταναλώσεων.

Η παρούσα εργασία κλείνει με το παράρτημα των πινάκων, ο οποίος περιέχει τις θερμοφυσικές ιδιότητες των προϊόντων σε διάφορες θερμοκρασίες αποθήκευσης και τέλος, ακολουθεί οι κάτοψη των θαλάμων.
INTRODUCTION

The purpose of this thesis is to familiarize students with the field of industrial refrigeration of meat. The Greek meats are very good quality. However, this requires proper management and processing, as well as safe keeping of the meat in refrigerated chambers. This is what the present work is about, with the right load calculations as well as the correct choice of engine rooms to know the energy required for the safe processing and maintenance of the meat before it is placed on the market.

In chapter 1, the thermal properties of the meat list provided by ASHRAE (American Society of Heating, Refrigeration and Air Conditioning) are presented. Presents the composition of the meat.

In chapter 2, the times required for a product to be frozen are counted. A specific formula is used for this process and the calculation process is presented step by step.

In chapter 3, the cooling chambers and the cooling methods used are analyzed. The criteria taken into account when designing a cabin are presented. Thereafter, refrigeration and freezing systems, mainly used in the meat industries, are presented, as well as how it work.

In chapter 4, the peculiarities of the red meat and poultry products to be taken into account during their maintenance are presented. Also shown is the cooling method and even the preferred storage conditions.

In chapter 5, reference is made to the refrigerant loads required to achieve the desired storage of the meat. These loads are required to cope with thermal gain due to internal heat sources and air changes. They also refer to the cooling of the space and the absorption of heat from the products, so that they obtain the final temperature of their maintenance.

In chapter 6, a study of a meat storage production unit is presented. More specifically, the plant consists of multi-purpose cold chambers, which process, refrigerate and freeze meat products. The installation is located in the Argolida area of Peloponnese and the stored meat comes from the surrounding area.

In chapter 7, we calculate the compressors we will use, the evaporators we place in each chamber and the condensers will be needed to eliminate the heat to the environment. Monthly consumption has also been calculated.

The present work closes with the annex of the tables, which contain the thermo physical properties of the products at different storage temperatures, and finally the top view of the chambers.
ΚΕΦΑΛΑΙΟ 1ο – ΙΔΙΟΤΗΤΕΣ ΤΡΟΦΙΜΩΝ

1.1 Γενικά

Οι θερμικές ιδιότητες των τροφίμων και των ποτών πρέπει να είναι γνωστές για να πραγματοποιηθούν οι διάφοροι υπολογισμοί μεταφοράς θερμότητας, που εμπλέκονται στο σχεδιασμό του εξοπλισμού αποθήκευσης και ψύξης καθώς και του χρόνου που απαιτείται για την επεξεργασία, την κατάψυξη. Βέβαια, καθώς οι θερμικές ιδιότητες των τροφίμων εξαρτώνται κυρίως από τη χημική τους σύνθεση και τη θερμοκρασία, κι επειδή εκατοντάδες είδη τροφίμων είναι διαθέσιμα στην αγορά, είναι σχεδόν αδύνατο να καθοριστούν πιεσματικά και να ταξινομηθούν, οι θερμικές τους ιδιότητες για όλες τις πιθανές συνθήσεις τους και για όλες τις θερμοκρασίες.

Εντούτοις, τα στοιχεία σύνθεσης μιας ποικιλίας κρεάτων είναι διαθέσιμα στον πίνακα 1.1 όπως αποτέλεσμα των επιστημονικών ιστοριών της και συνεπώς, οι θερμικές ιδιότητες των προϊόντων μπορούν να προβλεφθούν με χρήση των παραπάνω στοιχείων σε συνδυασμό με κατάλληλα μαθηματικά μοντέλα εξαρτώμενα της θερμοκρασίας.

Τα μαθηματικά μοντέλα που χρησιμοποιούνται στη παρούσα διπλωματική εργασία επιλέχθηκαν με γνώμονα την ακριβέστερη και αποτελεσματικότερη μελέτη των προϊόντων και θα αναλυθούν παρακάτω. Επιπλέον, για τους υπολογισμούς της μεταφοράς θερμότητας είναι απαραίτητος ο προσδιορισμός των θερμοφυσικών ιδιοτήτων των προϊόντων.

Οι ιδιότητες αυτές είναι:

- Η πυκνότητα ρ (kg/m3)
- Η ειδική θερμοχωρητικότητα Cp (kJ/kg °C)
- Η ενθαλπία H (kJ/kg)
- Η θερμική αγωγιμότητα k (W/m °C)
- Ο συντελεστής επιφανειακής μεταφοράς θερμότητας h (W/m² °C)
1.2 Θερμικές ιδιότητες τροφίμων

1.2.1 Αρχικό σημείο στερεοποίησης - (Initial Freezing Point)

Το αρχικό σημείο στερεοποίησης ενός προϊόντος ή η αρχική θερμοκρασία κατάψυξης T_f όπως αλλιώς μπορεί να αναφερθεί, είναι ελάχιστα μικρότερη από τη θερμοκρασία πήξης του καθαρού νερού που είναι στους 0 °C.

Στο αρχικό σημείο στερεοποίησης μία ποσότητα από το νερό του προϊόντος κρυσταλλώνει και το απομένων διάλυμα γίνεται πιο πυκνό μέχρι τον κρυσταλλώσει και αυτό μετά από την πάροδο συγκεκριμένου χρόνου εξαρτώμενον της θερμοκρασίας αποθήκευσης. Είναι σαφές ότι, όσο μικρότερη είναι η θερμοκρασία αποθήκευσης από τη θερμοκρασία στερεοποίησης τόσο πιο σύντομα επιτυγχάνεται η πλήρης κατάψυξη του προϊόντος. Στην πραγματικότητα, τρόφιμα με υψηλή περιεκτικότητα σε ζάχαρη και τρόφιμα που συσκευάζονται με υψηλές συγκεντρώσεις σε σιρόπι, μπορεί να μην είναι ποτέ τελείως κατεψυγμένα ακόμη και σε ακραίες θερμοκρασίες, όπως για παράδειγμα το μέλι.

Το σημείο στερεοποίησης είναι απαραίτητο για τους υπολογισμούς της συντήρησης των προϊόντων διότι, για παράδειγμα κάποια φρούτα και λαχανικά καταστρέφονται εάν αποθηκεύονται σε χαμηλότερες θερμοκρασίες και αντίστοιχα τα κρεατικά καταστρέφονται εάν αποθηκεύονται για μεγάλο χρονικό διάστημα σε θερμοκρασίες υψηλότερες του αρχικού τους σημείου στερεοποίησης.

Η θερμοκρασία T_f κάθε προϊόντος δίδεται στον πίνακα 1.1, ενώ για ορισμένα τρόφιμα για τα οποία δεν παρουσιάζεται στα εγχειρίδια της ASHRAE υπολογίστηκε από τις εμπειρικές σχέσεις των Chang και Tao (1981) συναρτήσει της υγρασίας:

- Κρεατικά: $T_f = 1.4 * X_{wo} - 2.15 \ (°C)$

1.2.2 Περιεκτικότητα σε νερό-υγρασία - (Water content)

Το νερό είναι το κύριο συστατικό στις περισσότερες τροφές, επομένως η περιεκτικότητα σε νερό ή υγρασία (X_{wo}), όπως πολύ συχνά αναφέρεται, επηρεάζει σημαντικά τις θερμοφυσικές ιδιότητες των τροφίμων. Η περιεκτικότητα σε νερό ποικίλλει για τα φρούτα και τα λαχανικά ανάλογα με το είδος και με το στάδιο της οριζόντιας ή ανάπτυξης τους. Αξίζει να αναφερθεί ότι αρκετή ποσότητα υγρασίας χάνεται τις αμέσως επόμενες 2-3 ημέρες από τη συγκομιδή. Οι τιμές της υγρασίας στον πίνακα 1.1 αναφέρονται στην ημέρα συγκομιδής ή παρασκευής των προϊόντων.

1.2.3 Ειδική θερμοχωρητικότητα - (Specific heat)

Η ειδική θερμοχωρητικότητα $C_p \ (kJ/ kg. °C)$, εκφράζει το μέτρο της ενέργειας που απαιτείται για την αλλαγή της θερμοκρασίας κατά ένα βαθμό ανά μονάδα βάρους ενός προϊόντος. Επομένως, είναι απαραίτητη η γνώση της για τον υπολογισμό του φορτίου που απαιτείται για την επιθυμητή θερμοκρασία αποθήκευσης. Η τιμή της, διακυμαίνεται αρκετά για τις διάφορες θερμοκρασίες και ειδικά για θερμοκρασίες μικρότερες από τη θερμοκρασία στερεοποίησης.
Πίνακας 1.1 Στοιχεία σύνθεσης και θερμικές ιδιότητες κρεάτων.

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Προϊόν</th>
<th>Υγρασία Xw (%)</th>
<th>Πρωτεΐνες Xp (%)</th>
<th>Λιπαρά Xf (%)</th>
<th>Υδατάνθρακες Xc (%)</th>
<th>Ίνες Xfb (%)</th>
<th>Τέφρα Τα (%)</th>
<th>Τf (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Βοδινό στήθος</td>
<td>55.18</td>
<td>16.94</td>
<td>26.54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.80</td>
<td>-1.2</td>
</tr>
<tr>
<td>2</td>
<td>Βοδινό συκώτι</td>
<td>68.99</td>
<td>20.00</td>
<td>3.85</td>
<td>5.82</td>
<td>0.0</td>
<td>1.34</td>
<td>-1.7</td>
</tr>
<tr>
<td>3</td>
<td>Βοδινό πλευρά</td>
<td>54.54</td>
<td>16.37</td>
<td>26.98</td>
<td>0.0</td>
<td>0.0</td>
<td>0.77</td>
<td>-1.2</td>
</tr>
<tr>
<td>4</td>
<td>Βοδινό άπαχο</td>
<td>71.70</td>
<td>21.24</td>
<td>4.40</td>
<td>0.0</td>
<td>0.0</td>
<td>1.08</td>
<td>-1.7</td>
</tr>
<tr>
<td>5</td>
<td>Βοδινό ψαρονέφρι</td>
<td>69.59</td>
<td>20.27</td>
<td>8.17</td>
<td>0.0</td>
<td>0.0</td>
<td>1.01</td>
<td>-1.3</td>
</tr>
<tr>
<td>6</td>
<td>Βοδινή μπριζόλα</td>
<td>69.71</td>
<td>20.78</td>
<td>7.27</td>
<td>0.0</td>
<td>0.0</td>
<td>0.70</td>
<td>-1.9</td>
</tr>
<tr>
<td>7</td>
<td>Χοιρινό λιπαρό</td>
<td>7.69</td>
<td>2.92</td>
<td>88.69</td>
<td>0.0</td>
<td>0.0</td>
<td>0.70</td>
<td>-1.9</td>
</tr>
<tr>
<td>8</td>
<td>Χοιρινό μπέικον</td>
<td>31.58</td>
<td>8.66</td>
<td>57.54</td>
<td>0.09</td>
<td>0.0</td>
<td>2.13</td>
<td>-1.5</td>
</tr>
<tr>
<td>9</td>
<td>Χοιρινή κοιλιά</td>
<td>36.74</td>
<td>9.34</td>
<td>53.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.49</td>
<td>-1.4</td>
</tr>
<tr>
<td>10</td>
<td>Χοιρινό με κόκκαλο</td>
<td>49.83</td>
<td>13.91</td>
<td>35.07</td>
<td>0.0</td>
<td>0.0</td>
<td>0.72</td>
<td>-1.2</td>
</tr>
<tr>
<td>11</td>
<td>Ζαμπόν άπαχο</td>
<td>68.26</td>
<td>22.32</td>
<td>5.71</td>
<td>0.05</td>
<td>0.0</td>
<td>3.66</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>Χοιρινός όμος</td>
<td>72.63</td>
<td>19.55</td>
<td>7.14</td>
<td>0.0</td>
<td>0.0</td>
<td>1.02</td>
<td>-2.2</td>
</tr>
<tr>
<td>13</td>
<td>Λουκάνικο Φρανκφούρτης</td>
<td>53.87</td>
<td>11.28</td>
<td>29.15</td>
<td>2.55</td>
<td>0.0</td>
<td>3.15</td>
<td>-1.7</td>
</tr>
<tr>
<td>14</td>
<td>Λουκάνικο Ιταλικό</td>
<td>51.08</td>
<td>14.25</td>
<td>31.33</td>
<td>0.65</td>
<td>0.0</td>
<td>2.70</td>
<td>-1.2</td>
</tr>
<tr>
<td>15</td>
<td>Λουκάνικο Πολωνίας</td>
<td>53.15</td>
<td>14.10</td>
<td>28.72</td>
<td>1.63</td>
<td>0.0</td>
<td>2.40</td>
<td>-1.2</td>
</tr>
<tr>
<td>16</td>
<td>Λουκάνικο χοιρινό</td>
<td>44.52</td>
<td>11.69</td>
<td>40.29</td>
<td>1.02</td>
<td>0.0</td>
<td>2.49</td>
<td>-1.3</td>
</tr>
<tr>
<td>17</td>
<td>Λουκάνικο καπνιστό</td>
<td>39.30</td>
<td>22.20</td>
<td>31.70</td>
<td>2.10</td>
<td>0.0</td>
<td>4.70</td>
<td>-1.4</td>
</tr>
<tr>
<td>18</td>
<td>Κοτόπουλο</td>
<td>65.99</td>
<td>18.60</td>
<td>15.06</td>
<td>0.0</td>
<td>0.0</td>
<td>0.79</td>
<td>-2.8</td>
</tr>
<tr>
<td>19</td>
<td>Πάπια</td>
<td>48.50</td>
<td>11.49</td>
<td>39.34</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68</td>
<td>-1.3</td>
</tr>
<tr>
<td>20</td>
<td>Γαλοπούλα</td>
<td>70.40</td>
<td>20.42</td>
<td>8.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.88</td>
<td>-0.9</td>
</tr>
<tr>
<td>21</td>
<td>Αρνί τεμαχισμένο άπαχο</td>
<td>73.42</td>
<td>20.29</td>
<td>5.25</td>
<td>0.0</td>
<td>0.0</td>
<td>1.06</td>
<td>-1.9</td>
</tr>
<tr>
<td>22</td>
<td>Αρνί πόδι άπαχο</td>
<td>74.11</td>
<td>20.56</td>
<td>4.51</td>
<td>0.0</td>
<td>0.0</td>
<td>1.07</td>
<td>-0.9</td>
</tr>
</tbody>
</table>
ΚΕΦΑΛΑΙΟ 2ο – ΧΡΟΝΟΣ ΚΑΤΑΨΥΞΗΣ ΤΡΟΦΙΜΩΝ

2.1 Γενικά

Η συντήρηση των τροφίμων είναι μία από τις πιο σημαντικές εφαρμογές της ψύξης. Η ψύξη και η κατάψυξη των τροφίμων μειώνει αποτελεσματικά τη δραστηριότητα των μικροοργανισμών και των ενζυμών, επιβλαβεύοντας έτσι αποτελεσματικά την αλλοίωση τους. Επιπλέον, η κρυστάλλωση του νερού που εμπεριέχεται στα τρόφιμα κατά την κατάψυξη τους, μειώνει σε ικανοποιητικό βαθμό την ανάπτυξη μικροβίων. Τα περισσότερα συστήματα ψύξης χρησιμοποιούν αέρα για τη μετάδοση θερμότητας δια συναγωγής και ένας περιορισμένος αριθμός προϊόντων ψύχονται σε καταψύκτες υπό την μορφή πλακών με μετάδοση θερμότητας δια αγωγής.

Η συντήρηση με κατάψυξη στηρίζεται στη μείωση της ανάπτυξης και δράσης των μικροοργανισμών όσο μειώνεται η θερμοκρασία. Παθογόνοι και μη παθογόνοι μικροοργανισμοί αδρανοποιούνται πλήρως στους -18 °C, ενώ πολλοί πεθαίνουν. Επίσης, όσο χαμηλότερη είναι η θερμοκρασία τόσο βραδύτερα εξελίσσονται οι διάφορες ενζυμικές και χημικές δράσεις που συμβαίνουν στο τρόφιμο. Ορισμένες ενζυμικές δράσεις συνεχίζονται ακόμα και σε θερμοκρασία -30 °C γι’ αυτό συνιστάται το ζεμάτισμα αρχίζει όσο μειώνεται η θερμοκρασία του τροφίμου κατά την κατάψυξη. Επιπλέον η επίδραση της μείωσης της θερμοκρασίας μέσω της κρυστάλλωσης του νερού στο τρόφιμο μειώνει το ποσό του διαθέσιμου υγρού και έτσι επιβλαβεί την ανάπτυξη μικροοργανισμών και την ενζυμική δραστηριότητα. Για το σχεδιασμό ενός συστήματος κατάψυξης πρέπει κατ’ αρχήν να εκτιμηθούν οι ενεργειακές απαιτήσεις ενζυμικής δραστηριότητας του τροφίμου κατά την κατάψυξη. Αυτή η μεταβολή εξαρτάται από το τρόφιμο το οποίο καταψύχεται. Ο δεύτερος σημαντικός παράγοντας για ένα τέτοιο σύστημα είναι ο ρυθμός με τον οποίο προχωρεί η κατάψυξη του τροφίμου. Ο ρυθμός κατάψυξης σχετίζεται με τις ενεργειακές απαιτήσεις, τη διαφορά θερμοκρασίας μεταξύ του τροφίμου και του μέσου κατάψυξης και τις ιδιότητες του τροφίμου. Ο ρυθμός κατάψυξης επηρεάζει το τόπο κατάψυξης του τροφίμου και τη διάρκεια της κατάψυξης και τη διάρκεια της κατάψυξης και της ποιότητας του προϊόντος. Επίσης, ο ρυθμός κατάψυξης καθορίζει το ρυθμό προμήθειας και η ποιότητα του προϊόντος μπορεί να επηρεαστεί. Επιπλέον, ο ρυθμός κατάψυξης καθορίζει και την ανάπτυξη και την ποιότητα του προϊόντος.

Επειδή τα περισσότερα εμπορεύματα είναι ακανόνιστου σχήματος και ακόμη οι θερμοφυσικές ιδιότητες εξαρτώνται της ανάπτυξης της θερμοκρασίας, ακριβείς αναλυτικές λύσεις για την ψύξη και την υπολογισμό του χρόνου αυτής δεν μπορούν ο ιδιότητες της ακριβοτερούς υποθέσεων. Οι περισσότερες έρευνες που έχουν διατυπωθεί έως σήμερα έχουν επικεντρωθεί στην ανάπτυξη εμπειρικών, ημιαναλυτικών μεθόδων για τον υπολογισμό του χρόνου και βασίζονται σε διάφορες απλουστευτικές υποθέσεις.
2.2 Υπολογισμός χρόνου κατάψυξης

Όπως διατυπώθηκε στην αρχή του παρόντος κεφαλαίου, η κατάψυξη των τροφίμων και των ποτών δε
eίναι μία ισόθερμη διαδικασία αλλά λαμβάνει χώρα ένα εύρος θερμοκρασιών. Η μέθοδος κατάψυξης που
χρησιμοποιείται βασίζεται στη μέθοδο του Plank (1941) τροποποιημένη σύμφωνα με τους ερευνητές
Cleland και Earle (1979). Οι προαναφερθέντες ενσωμάτωσαν στους υπολογισμούς την απομάκρυνση της
θερμότητας τόσο πάνω, όσο και κάτω από τη θερμοκρασία στερεοποίησης του τροφίμου, καθώς και τις
dιακυμάνσεις της θερμοκρασίας κατά τη διάρκεια της κατάψυξης. Ο συνολικός χρόνος κατάψυξης (σε
sec) στην επιθυμητή θερμοκρασία που απαιτείται, αποτελείται από το άθροισμα του χρόνου πρόψυξης,
alλαγής φάσης και της υπόψυξης. Υπολογίζεται από την εξίσωση:

$$ t = \frac{\rho \cdot \lambda}{T_f - T_m} \cdot \left(\frac{P \cdot a}{h} + \frac{R \cdot a^2}{k} \right) $$

Όπου:

$\rho = \text{η πυκνότητα του προϊόντος όταν παγώσει (kg/m}^3\text{)}$

$\lambda = \text{λανθάνουσα θερμότητα (333,2 * ποσοστό υγρασίας) (kJ/kg)}$

$T_f = \text{θερμοκρασία στερεοποίησης του προϊόντος (°C)}$

$T_m = \text{θερμοκρασία ψυκτικού μέσου (°C)}$

$a = \text{χαρακτηριστική διάσταση του προϊόντος (m)}$

$h = \text{συντελεστής επιφανειακής μεταφοράς θερμότητας (W/m}^2 \cdot \text{°C) }}$

$k = \text{συντελεστής θερμικής αγωγιμότητας του προϊόντος (W/m} \cdot \text{°C) }$

$P, R = \text{γεωμετρικοί παράγοντες εξαρτώμενοι του σχήματος του προϊόντος}$
2.2.1 Μέθοδος υπολογισμού παραγόντων \(P \) και \(R \) για την κατάψυξη

Οι τιμές των παραγόντων \(P \) και \(R \) διαφέρουν σε κάθε περίπτωση ανάλογα με το σχήμα του προϊόντος και τις διαστάσεις του, δηλαδή το μέγεθός του.

Οπότε για:

Πλάκα άπειρου μεγέθους οι παράγοντες είναι: \(P = \frac{1}{2} \) και \(R = \frac{1}{8} \)

Κύλινδρο άπειρου μήκους οι παράγοντες είναι: \(P = \frac{1}{4} \) και \(R = \frac{1}{16} \)

Σφαίρα ή κύβοι οι παράγοντες είναι: \(P = \frac{1}{6} \) και \(R = \frac{1}{24} \)

Για σώματα σε σχήμα παραλληλεπιπεδού δίνονται από το επόμενο διάγραμμα όπου \(\beta_1 \) και \(\beta_2 \) είναι ο λόγος των δύο μεγαλύτερων διαστάσεων δια της μικρής διάστασης.
Παράδειγμα

Έχουμε διαστάσεις προϊόντος 10*15*5 cm οπότε:

- \(\beta_1 = \frac{15}{5} = 3\)
- \(\beta_2 = \frac{10}{5} = 2\)

Σύμφωνα με τις τιμές αυτές πηγαίνοντας στον πίνακα βρίσκουμε ότι \(P = 0.27\) και \(R = 0.077\)

- Για τον παράγοντα \(P\) διαβάζουμε τον άξονα \(X\) και για τον παράγοντα \(R\) τον άξονα \(Y\)
ΚΕΦΑΛΑΙΟ 3ο – ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΙΔΗ ΨΥΚΤΙΚΩΝ ΜΟΝΑΔΩΝ

3.1 Εισαγωγή

Ψυκτικοί θάλαμοι είναι τα κτίρια ή τα τμήματα του κτιρίου όπου επιτυγχάνονται ελεγχόμενες συνθήκες αποθήκευσης μέσω της ψύξης. Χωρίζονται σε δύο βασικές κατηγορίες:

1. Σε ψυγεία που προστατεύουν και διατηρούν τα εμπορεύματα, σε θερμοκρασίες συνήθως υψηλότερες των 0°C.
2. Σε χαμηλής θερμοκρασίας θαλάμους, τους καταψύκτες, που λειτουργούν σε θερμοκρασίες υπό των 0°C για την αποφυγή της αλλοίωσης, τη διατήρηση και την παράταση της διάρκειας ζωής των προϊόντων.

Οι συνθήκες εντός του ψυκτικού θαλάμου πρέπει να διατηρούνται σταθερές ώστε και το τρόφιμο να διατηρείται αναλλοίωτο. Αυτό είναι απαραίτητο τόσο για την εποχιακή όσο και τη μακροχρόνια αποθήκευση. Οι παράγοντες οι οποίοι λαμβάνονται υπόψη ώστε αυτό να επιτυγχάνεται είναι οι εξής:

- Οι ομοιόμορφες θερμοκρασίες σε όλους τους χώρους του ψυκτικού θαλάμου.
- Η διαρκής ροή του αέρα στην επιθυμητή θερμοκρασία και η πρόσκρουση αυτού στα προϊόντα.
- Ο έλεγχος της σχετικής υγρασίας και η διατήρηση αυτής στα επιθυμητά επίπεδα.
- Η επίδραση της ροής και της θερμοκρασίας του αέρα λόγω της ύπαρξης και εργασίας των εργαζομένων εντός του θαλάμου.
- Ο ελεγχόμενος εξαερισμός.
- Η θερμοκρασία προσαγωγής του προϊόντος εντός του θαλάμου.
- Η αναμενόμενη διάρκεια αποθήκευσης των προϊόντων, εάν δηλαδή είναι βραχυπρόθεσμη ή μακροπρόθεσμη.
- Η απαιτούμενη θερμοκρασία εξόδου του προϊόντος από τον θάλαμο.
- Οι εξωτερικές περιβαλλοντικές συνθήκες.

Ο σχεδιασμός ενός ψυκτικού θαλάμου ακολουθεί το εθνικό πρότυπο πιστοποίησης, το οποίο διασφαλίζει τη δημόσια υγεία. Το πρότυπο αυτό ασχολείται με όλα τα στάδια διακίνησης τροφίμων μέσω των ψυκτικών θαλάμων. Συγκεκριμένα, αναφέρεται στη λήψη, το χειρισμό, την αποθήκευση, τη μεταφορά και την ψύξη των τροφίμων απαιτώντας κατάλληλες συνθήκες υγιεινής και επιθυμητές θερμοκρασίες αποθήκευσης.

Αξίζει να σημειωθεί ότι τα τελευταία χρόνια μέσω των συνεχιζόμενων ερευνών η τάση είναι η διατήρηση των τροφίμων σε ψυκτικές κατάγωγες και η μακροχρόνια συντήρηση, τους χωρίς όμως να επέρχεται αλλοίωση σε αυτά. Αντιθέτως η ποιότητά τους παραμένει σταθερή στα αρχικά της επίπεδα.
3.2 Συστήματα ψύξης

3.2.1 Επιλογή ψυκτικού μέσου

Η επιλογή του ψυκτικού μέσου αποτελεί σημαντικό παράγοντα κατά το σχεδιασμό μίας εγκατάστασης. Εκτός από το φρέον, όπου πλέον έχουν βγει διάφοροι καινούργιοι τύποι που είναι πιο φιλικοί στο περιβάλλον, χρησιμοποιούνται και άλλα είδη για ψυκτικά μέσα, όπως είναι η αμμωνία (NH₃), το διοξείδιο του άνθρακα (CO₂) και το προπάνιο (R-290). Η αμμωνία R-717 ή NH₃ χρησιμοποιείται ευρέως πλέον και ιδιαίτερα στη βιομηχανία ψύξης των τροφίμων. Εγκαταστάσεις που απαιτούν αρκετά χαμηλές θερμοκρασίες χρησιμοποιούν το R-507A ή R-404A που είναι αντικαταστάτες των R-502 και R-22 αντίστοιχα. Οι παράμετροι που πρέπει να εξεταστούν κατά την εκλογή του ψυκτικού μέσου είναι:

- Το κόστος του.
- Τα θέματα του κώδικα ασφαλείας (π.χ. οι απαιτήσεις ασφαλείας σε χώρους και εγκαταστάσεις).
- Η απαίτηση σε ψυκτικό φορτίο (π.χ. φορτίο που απαιτεί χρήση μεγαλύτερη των 4536 kg αμμονίας επιτάσσει ειδικά συστήματα ασφαλείας και ανάπτυξη σχεδίου διαχείρισης κινδύνων).
- Οι επιδράσεις στην υπερθέρμανση του πλανήτη και καταστροφή του οξέοντος. Αξίζει να σημειωθεί ότι η αμμωνία δεν καταστρέφει το οξέον.

3.2.2 Επιλογή μονάδας ψύξης

Οι μονάδες που χρησιμοποιούνται στη βιομηχανία ψύξης των τροφίμων είναι ανεμιστήρα-εναλλάκτη (fan-coil units). Οι μονάδες αυτές έχουν αερόψυκτους εξατμιστές όπου ψύχουν το αέρα που εισέρχεται εντός του θαλάμου. Εφαρμογές που αφορούν ψύξη αέρα τυπικά χρησιμοποιούν εξατμιστές που περιέχουν το ψυκτικό μέσο μέσα σε σωλήνες ενώ ένας ανεμιστήρας παρέχει ή αναρροφά τον αέρα από τον εξατμιστή. Καθώς απαιτούνται σημαντικά μήκη σωλήνων για να επιτευχθεί η ψύξη του αέρα, οι σωλήνες μπορεί να «διασχίζουν» τον εξατμιστή αρκετές φορές. Για αυτό το λόγο, οι εξατμιστές που χρησιμοποιούνται για την ψύξη του αέρα ονομάζονται στοιχεία. Τα στοιχεία αέρα κατασκευάζονται σε τρεις βασικές τυπολογίες ανάλογα με την μέθοδο προσαγωγής του ψυκτικού μέσου: (α) Άμεσης εκτόνωσης (β) Υπερχείλισης και (γ) Επανακυκλοφορίας.

Η θερμοκρασία αποθήκευσης του προϊόντος, το είδος του καθώς και αν αυτό είναι συσκευασμένο είναι παράγοντες οι οποίοι πρέπει να ληφθούν υπόψη κατά την επιλογή της μονάδας. Η επιφάνεια εναλλαγής θερμότητας, η διαφορά θερμοκρασιών αέρα ανακυκλοφορίας και ψυκτικού μέσου και η ογκομετρική παροχή αέρα εξαρτώνται από την εφαρμογή για την οποία εγκαθίστανται.
3.2.3 Απόψυξη μονάδων fan-coil

Όλα τα συστήματα fan-coil λειτουργούν κανονικά υπό συνθήκες δωματίου έως τη θερμοκρασία του σημείου δρόσου του αέρα. Σε περίπτωση λειτουργίας όμως σε θερμοκρασίες μικρότερες των 3.3 °C, χρειάζονται απόψυξη. Κοινές μέθοδοι απόψυξης των εξατμιστών είναι με:

- Αέρα περιβάλλοντος (λειτουργία ανεμιστήρων με κλειστή την μαγνητική)
- Hot gas (παράκαμψη θερμού ψυκτικού μέσου από την κατάθλιψη του συμπιεστή)
- Ηλεκτρική αντιστάσεις
- Με χρήση νερού

Οι μονάδες που είναι τοποθετημένες πάνω από τις εισόδους των θαλάμων έρχονται σε επαφή με θερμότερο αέρα συχνότερα και επομένως είναι πιο επιρρεπείς στο σχηματισμό κρούστας πάγου. Κατά τη διάρκεια της απόψυξης ο πάγος λιώνει και γίνεται νερό. Το συμπύκνωμα αυτό συλλέγεται σε μία λεκάνη συλλογής και μέσω των αποχετεύσεων οδηγείται εκτός του θαλάμου. Εξαιτίας των χαμηλών θερμοκρασιών εντός του θαλάμου υπάρχει ο κίνδυνος της εκ νέου κρυσταλλοποίησης του συμπυκνωμάτος. Για το λόγο αυτό οι συλλιγνίσεις των αποχετεύσεων πρέπει να θερμαίνονται με ηλεκτρικές αντιστάσεις στο εσωτερικό τους.

3.2.4 Συμπιεστές

Ο συμπιεστής είναι το πιο σημαντικό εξάρτημα σε κάθε ψυκτική εγκατάσταση, και εργάζεται με βάση τον ψυκτικό κύκλο με συμπίεση ατμών του ψυκτικού μέσου. Ο συμπιεστής αναρροφά το ψυκτικό μέσο από τον εξατμιστή και το συμπίεζε (καταθλίβει) προς το συμπυκνωτή. Με αυτόν τον τρόπο δημιουργείται μία συνεχής διαφορά πίεσης μεταξύ της πλευράς αναρρόφησης και πλευράς κατάθλιψης.

Κάθε ψυκτική εγκατάσταση, ανάλογα με την εφαρμογή της, παρουσιάζει και ιδιαίτερα χαρακτηριστικά λειτουργίας. Σε περιπτώσεις ψυκτικών εγκαταστάσεων συντήρησης προϊόντων (θερμοκρασία θαλάμου -2°C), η διαφορά πίεσης μεταξύ της αναρρόφησης και της κατάθλιψης είναι πολύ μικρή από τη διαφορά πίεσης σε μια εγκατάσταση βαθειάς κατάψυξης (θερμοκρασία θαλάμου -35°C). Επίσης, ανάλογα με την εφαρμογή ψύξης, ο όγκος (ποσότητα) του ψυκτικού μέσου που κυκλοφορεί στην εγκατάσταση, μπορεί να είναι μεγάλος ή μικρός. Για τους παραπάνω λόγους, έχουν κατασκευασθεί συμπιεστές διαφόρων τύπων, χαρακτηριστικών λειτουργιών και μεγεθών.

Οι συμπιεστές που προορίζονται για εγκαταστάσεις ψύξης τροφίμων, μπορούν να καταταχθούν σε διάφορους τύπους ανάλογα με τον τρόπο που παίρνουν κίνηση και τη δυνατότητα επέμβασης στο εσωτερικό τους. Έτσι οι συμπιεστές διακρίνονται σε:

- Ανοιχτού τύπου (open)
- Ημίκλειστους ή ημιερμητικούς (semihermetic)
- Κλειστού τύπου ή ερμητικούς (hermetic)
Για την ψύξη προϊόντων σε θερμοκρασίες χαμηλότερες των -32 °C, χρησιμοποιείται συμπίεση σε δύο στάδια. Ενδείκνυται επίσης η συμπίεση σε δύο στάδια όταν τα ψυκτικά φορτία είναι μεταβλητά κατά την πάροδο του χρόνου. Επομένως, το επίπεδο χαμηλής συμπίεσης ικανοποιεί τα χαμηλά ψυκτικά φορτία και το υψηλής συμπίεσης τα υψηλά αντίστοιχα. Επιπρόσθετα, η χρήση πολλαπλών συμπιεστών και η ρύθμιση λειτουργίας αυτών βάσει των θερμοκρασιών αναρρόφησης βοηθά στην ομαλότερη λειτουργία της εγκατάστασης. Για παράδειγμα, τους χειμερινούς μήνες όπου οι θερμοκρασίες περιβάλλοντος είναι χαμηλές δεν θα λειτουργούν όλοι οι συμπιεστές διότι το ολικό ψυκτικό φορτίο είναι μικρότερο από ότι τους καλοκαιρινούς, οπότε η ταυτόχρονη λειτουργία όλων των συμπιεστών δεν είναι απαραίτητη.
ΚΕΦΑΛΑΙΟ 4ο – ΚΑΤΗΓΟΡΙΕΣ ΚΑΙ ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΣΥΝΤΗΡΗΣΗΣ ΤΩΝ ΠΡΟΪΟΝΤΩΝ

4.1 Προϊόντα κόκκινου κρέατος

4.1.1 Γενικά

Σύμφωνα με πρόσφατες έρευνες, 4 έως 5 εκατομμύρια τετράποδα ζωντανά σφαγιάζονται παγκοσμίως, ώστε να ικανοποιούνται οι ανάγκες για κόκκινο κρέας. Η διαδικασία της σφαγής κατά κύριο λόγο γίνεται σε ειδικούς χώρους, τα σφαγεία, υπό την επιτήρηση των υγειονομικών αρχών. Μόνο ένα μικρό μέρος των ζωντανών σφαγιάζονται παρανόμως στα αγροκτήματα, διαδικασία που μπορεί να επιφέρει κινδύνους μόλυνσης λόγω έλλειψης εγκαταστάσεων υγιεινής.

4.1.2 Υγιεινή

Οι διαδικασίες υγιεινής πρέπει να εφαρμόζονται σε όλα τα στάδια της επεξεργασίας τροφίμων, όχι μόνο για την προστασία του καταναλωτή, αλλά και για την ανταπόκριση των αισθητικών απαιτήσεων. Από αυτή την άποψη, οι μονάδες επεξεργασίας κρέατος δεν διαφοροποιούνται από τις μονάδες διαφορετικών προϊόντων. Αντιθέτως, εφαρμόζονται οι ίδιες αρχές όσον αναφορά στις εγκαταστάσεις αποχέτευσης, καθαρισμού και απολύμανσης. Οι σωστές εγγυήσεις και οι ορθές παρασκευαστικές πρακτικές μίας μονάδας επεξεργασίας κρέατος ελαχιστοποιούν τον κίνδυνο βακτηριακής μόλυνσης και ανάπτυξης. Αυτό περιλαμβάνει την χρήση καθαρών πρώτων υλών, απολυμασμένου νερού και αέρα, συνεχή έλεγχο της θερμοκρασίας, ιδιαίτερα σε ψυγεία και καταψύκτες και λεπτομερή απολύμανση των επιφάνειων που έρχονται σε άμεση επαφή με το προϊόν. Ο έλεγχος τήρησης των παραπάνω πρότυπων διαδικασιών αναλαμβάνεται από την αρμόδια υπηρεσία του Υπουργείου Υγείας κάθε χώρας. Στην Ελλάδα ο οργανισμός αυτός είναι ο ΕΦΕΤ (Ενιαίος Φορέας Ελέγχου Τροφίμων).
4.1.3 Ψύξη και κατάψυξη κρεάτων

Η θερμοκρασία των κρεάτων αμέσως μετά τη διαδικασία της σφαγής πρέπει να ελαττώνεται στους 0 ή -2 °C, ώστε να αποφευχθεί η αλλοίωση της ποιότητάς τους. Αυτή η ταχεία κατάψυξη δεν πραγματοποιείται εύκολα, ιδιαίτερα σε κρέατα συσκευασμένα ή τοποθετημένα σε παλέτες. Στις περιπτώσεις αυτές, η απλή ψύξη με κυκλοφορία αέρα στο θάλαμο μπορεί να διαρκέσει έως και μια ημέρα. Έτσι, πάνω από το 50% των βιομηχανιών επεξεργασίας κρέατος χρησιμοποιούν μεθόδους ταχυκατάψυξης. Στην περίπτωση αυτή η εγκατάσταση λειτουργεί σε θερμοκρασίες έως και -40 oC με ταχύτητες αέρα από 2.5 έως 5 m/sec και οι μονάδες fan coil είναι αξονικής ροής.

Η εναλλακτική μέθοδος που χρησιμοποιείται, κυρίως για συσκευασμένα τρόφιμα, είναι η χρήση καταψυκτών. Στις περιπτώσεις αυτές, οι καταψύκτες τοποθετούνται εντός του θαλάμου και χρησιμοποιούν κρυογονική μέθοδο κατάψυξης ή διά επαφή. Η ψύξη και η κατάψυξη, του κρέατος, επηρεάζουν σημαντικά:

- Το χρώμα
 Το χρώμα του κατεψυγμένου κρέατος εξαρτάται από το ρυθμό της ψύξης. Δοκιμές απέδειξαν ότι, για μοσχαρίσια μπριζόλα σε αέρα θερμοκρασίας -30 και -40 oC, η οποία πρώτα εμβαπτίσθηκε σε νερό, το χρώμα στους -30 oC ήταν πλησιέστερο στο αρχικό.

- Τη γεύση και την υφή
 Τα άρωμα του κρέατος δεν αλλοιώνεται, διότι δεν εξαρτάται από τη θερμοκρασία της ψύξης. Η γεύση και η υφή, όμως, εξαρτώνται άμεσα από την τελική θερμοκρασία κατάψυξης. Ταχύτερη κατάψυξη σε χαμηλές θερμοκρασίες αποτρέπει την αλλοίωση.

- Τη ποιότητα
 Αναπόφευκτα, πολλές από τις θρεπτικές ουσίες χάνονται, μετά την πάροδο των μηνών που το προϊόν είναι κατεψυγμένο. Αυτή η αιτία, που έχει συνέπεια να διατηρείται για περισσότερο χρονικό διάστημα από όλα τα άλλα είδη κρέατος. Αυτή η είναι και η αιτία, που προτιμώνται καταψύκτες κρυογονικής ψύξης για την κατάψυξη των κρεάτων.

- Το λίπος
 Μετά τη διενέργεια διαφόρων πειραμάτων απεδείχθη ότι για θερμοκρασίες μεγαλύτερες των -20 °C και μετά την πάροδο 3 μηνών, το χοιρινό κρέας παρουσιάζει μεταβολή στο λίπος του. Συνοψίζοντας, βάσει των ισχυρισμών της ASHRAE, το χοιρινό κρέας διατηρείται μειωμένο για περισσότερο χρονικό διάστημα από όλα τα άλλα είδη κρέατος. Η διαφοροποίηση αυτή οφείλεται στην ποιότητα των κορεσμένων λιπαρών του, καθώς και στο ότι το χοιρινό παρουσιάζει τις λιγότερες ευαισθησίες κατά την καταψύξη του.
4.2 Προϊόντα πουλερικών

4.2.1 Γενικά

Τα προϊόντα πουλερικών και συγκεκριμένα τα κοτόπουλα, αποτελούν την πλέον ευρέως διαδεδομένη κατηγορία εκτρεφόμενων ζώων στη γη. Τα πουλερικά ανήκουν στην κατηγορία του λευκού κρέατος. Η βιομηχανία επεξεργασίας και ψύξης πουλερικών έχει να αντιμετωπίσει μία μεγάλη πρόκληση, την ασφαλή διατήρηση της ποιότητας των προϊόντων και παράλληλα, την πρόληψη ανάπτυξης παθογόνων μικροοργανισμών, οι οποίοι εν συνεχεία μεταφέρονται στον καταναλωτή και αναπτύσσονται με ραγδαίους ρυθμούς.

4.2.2 Ψύξη πουλερικών

Τα επεξεργασμένα, πλέον, προϊόντα, δηλαδή αυτά που σφαγιάσθηκαν και καθαρίστηκαν, μπορούν να ψυχθούν στους -3.5 °C ή να καταψυχθούν σε χαμηλότερες θερμοκρασίες. Σύμφωνα με τους Αμερικανικούς κανονισμούς USDA, τα σφάγια πουλερικών με μάζα μικρότερη από 1.8 κιλά πρέπει να ψύχονται στους 4.5 °C ή χαμηλότερα σε λιγότερο από 4 ώρες, από 1.8 έως 3.6 κιλά σε λιγότερο από 6 ώρες και άνω των 3.6 κιλών σε λιγότερο από 8 ώρες.

Οι μέθοδοι ψύξης και κατάψυξης που χρησιμοποιούνται για τα πουλερικά είναι:

- Με πάγο
- Με κυκλοφορία αέρα
- Με ψεκασμό νερού
- Με κρυογονική μέθοδο, είτε διοξειδίου του άνθρακα είτε με ψεκασμό υγρού αζώτου στις περιπτώσεις των συσκευασμένων προϊόντων.

Η μέθοδος ψύξης που χρησιμοποιείται τα τελευταία χρόνια είναι η εμβάπτιση των πουλερικών σε δεξαμενές με πάγο ή νερό και η εν συνεχεία συντήρησή τους στο θάλαμο, ενώ για ολόκληρα πουλερικά χρησιμοποιείται ψύξη με κυκλοφορία αέρα, είτε εντός του θαλάμου, είτε ψύξη με κυκλοφορία αέρα χρησιμοποιώντας καταψύκτη σε υψηλή θερμοκρασία.

Ωστόσο, και οι δύο παραπάνω μέθοδοι εμφανίζουν προβλήματα. Η ψύξη με κυκλοφορία αέρα είναι αρκετά αργή, με αποτέλεσμα να απαιτεί αρκετά χαμηλές θερμοκρασίες για την επίσπευση και επίσης, οδηγεί στην εξάτμιση της υγρασίας των προϊόντων. Η μέθοδος εμβάπτισης σε πάγο ή νερό εγκυμονεί κινδύνους βακτηριακής μόλυνσης, καθώς όπως αναφέρθηκε προηγουμένως, τα πουλερικά είναι επίκαιρης στις μολύνσεις. Επιπλέον, είναι αρκετά υψηλό και το κόστος διαχείρισης των αποβλήτων. Κατά συνέπεια, το μέλλον στη ψύξη των πουλερικών αποτελεί η χρήση κρυογονικών μεθόδων.

Τα προϊόντα που έχουν ψυχθεί υπό κατάλληλες συνθήκες, αποτελούν ένα εξαιρετικά προϊόν. Ωστόσο, υπάρχουν περιορισμοί στην εμπορευσιμότητά τους λόγω της μικρής διάρκειας ζωής τους. Ένα πουλερικό που δεν καταψύχεται έχει μικρό χρόνο ζωής, εξαιτίας της βακτηριακής επιδείνωσης που υπόκειται και είναι αρκετά επικίνδυνη για τον ανθρώπινο οργανισμό. Μελέτες βασισμένες στο συνολικό αριθμό βακτηρίων απέδειξαν ότι πτηνά που διατηρούνταν στους 2 °C για 14 ημέρες παρουσιάζουν ιδία συμπεριφορά με αυτά που διατηρούνται στους 10 °C για 5 ημέρες και στους 24 °C για μία ημέρα.
4.2.3 Κατάψυξη πουλερικών

Οι θερμοκρασίες κατάψυξης και η προστασία από το ατμοσφαιρικό οξυγόνο, μειώνουν την βακτηριακή ανάπτυξη και παρατείνουν τη διάρκεια ζωής των πουλερικών. Γενικότερα, για αυτό το είδος των προϊόντων, προτιμάται η κατάψυξη σε αρκετά χαμηλές θερμοκρασίες, δηλαδή από -17 έως -30 °C όπου διατηρούνται έως και 10 μήνες. Σε περίπτωση αργής κατάψυξης σε εύρος θερμοκρασιών από -3 έως -10 °C εμφανίζεται, εντόνως, το φαινόμενο του σχηματισμού κρυστάλλων πάγου εντός του προϊόντος. Στην περίπτωση αυτή, κατά την απόψυξη αποβάλλεται μεγάλο μέρος της υγρασίας του προϊόντος, με αποτέλεσμα να αλλοιώνεται η υφή του κατά την κατανάλωση (στεγνό κρέας).

Οι μέθοδοι κατάψυξης που χρησιμοποιούνται είναι:

- Σήραγγες κυκλοφορίας αέρα. Ο αέρας έχει θερμοκρασία -29 °C και ταχύτητα έως και 12,7 m/sec. Τα προϊόντα τοποθετούνται εντός του καταψύκτη, έτσι ώστε να επιτρέπεται η ροή του αέρα σε κάθε ένα από αυτά.

- Καταψύκτες κρυογονικής ψύξης. Με τη μέθοδο αυτή το προϊόν καταψύχεται σε μικρό χρονικό διάστημα και δημιουργείται μία κρούστα πάγου στο εξωτερικό του αποτρέποντας τον σχηματισμό στο εσωτερικό του και την περαιτέρω ξηρανσή του.

- Καταψύκτες σπειροειδούς ζώνης. Η μέθοδος αυτή ενδείκνυται για συσκευασμένα πουλερικά αποφέροντας εξαιρετικά αποτελέσματα.

4.2.4 Απολύμανση πουλερικών

Λόγω της ευαισθησίας σε μολύνσεις που παρουσιάζουν τα πουλερικά, το σύστημα ελέγχου HACCP έχει επιβάλλει την απολύμανσή τους. Η παραπάνω διαδικασία λαμβάνει χώρα αμέσως μετά τη σφαγή και την επεξεργασία και πριν την ψύξη. Οι μέθοδοι απολύμανσης που χρησιμοποιούνται είναι οι εξής:

- Με ακτινοβόληση ακτινών Γάμμα.
- Με ψεκασμό υπέρθερμου ατμού θερμοκρασίας 140 °C.
5.1 Εισαγωγή

Ο καθορισμός της ψυκτικής ισχύος και η επιλογή της κατάλληλης ψυκτικής εγκαταστάσεως, που θα τροφοδοτεί με την απαραίτητη ψύξη τους ψυκτικούς θαλάμους αποθήκευσης προϊόντων ενός βιομηχανικού ψυγείου ή ψυκτικού συγκροτήματος και θα εξασφαλίζει την σωστή λειτουργία τους, προϋποθέτει τον προσδιορισμό και υπολογισμό των επιμέρους θερμικών φορτίων. Ο επακριβής προσδιορισμός των ψυκτικών φορτίων είναι αρκετά δυσχερής λόγω του μεγάλου αριθμού των μεταβλητών που υπεισέρχονται.

5.2 Ψυκτικά φορτία

Το συνολικό ψυκτικό φορτίο ενός ψυκτικού θαλάμου περιλαμβάνει:

- Το φορτίο ψύξης του χώρου
- Το φορτίο ψύξης ή κατάψυξης των προϊόντων
- Το ψυκτικό φορτίο εσωτερικής λειτουργίας
- Το φορτίο εναλλαγών αέρα
- Το ψυκτικό φορτίο που σχετίζεται με τον εξοπλισμό

5.2.1 Φορτίο ψύξης του χώρου - (Transmission load)

Το φορτίο ψύξης του χώρου ή μετάδοσης θερμότητας ψύξης στο χώρο αναφέρεται στη θερμότητα που προσδίδεται στο εσωτερικό του ψυκτικού θαλάμου ώστε να διατηρείται η θερμοκρασία σταθερή στα επιθυμητά επίπεδα. Επί της ουσίας, είναι τα θερμικά φορτία που δέχεται ένας ψυκτικός θάλαμος μέσω των τοιχωμάτων του, του δαπέδου και της οροφής. Τα φορτία αυτά εξαρτώνται άμεσα από το υλικό κατασκευής των επιμέρους δομικών στοιχείων, από την ύπαρξη και το πάχος της θερμομονώσεως, από την γεωμετρία της κατασκευής (μονώροφη ή πολυώροφη εγκατάσταση) και από το αν οι εξωτερικές επιφάνειες είναι άμεσα εκτεθειμένες στην ηλιακή ακτινοβολία. Το αισθητό θερμικό φορτίο των δομικών στοιχείων που καλείται να αντιμετωπιστεί, υπολογίζεται για κάθε τμήμα του θαλάμου ξεχωριστά ως εξής:

\[Q_T = U * A * \Delta T \]

Οπου:

- \(Q_T \): ψυκτικό φορτίο από τοιχοποιία (Watt)
- \(U \): συντελεστής θερμοπερατότητας (W/m² °C)
- \(A \): εμβαδόν επιφάνειας (m²)
- \(\Delta T \): διαφορά μεταξύ εξωτερικής και εσωτερικής θερμοκρασίας ψυκτικού θαλάμου (°C)
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Ο ολικός συντελεστής θερμοπερατότητας των δομικών στοιχείων υπολογίζεται ως εξής:

\[U = \frac{1}{\frac{1}{h_i} + x + \frac{1}{h_o}} \]

όπου:

\(x \): πάχος τοιχωμάτων (m)
\(k \): θερμική αγωγιμότητα τοιχωμάτων (W/ m. °C)
\(h_i \): εσωτερική επιφανειακή αγωγιμότητα (W/ m. °C)
\(h_o \): εξωτερική επιφανειακή αγωγιμότητα (W/ m. °C)

Για την κατασκευή των θαλάμων χρησιμοποιούμε πάνελ τα οποία αποτελούνται από δύο λεπτά φύλλα χάλυβα που ανάμεσά τους έχουν αφρό πολυουρεθάνης. Ο συντελεστής θερμοπερατότητας του πάνελ αλλάζει ανάλογα με το πάχος του. Παρακάτω στον πίνακα φαίνονται οι αντίστοιχες:

<table>
<thead>
<tr>
<th>Πάχος Πάνελ (m)</th>
<th>Συντελεστής Θερμοπερατότητας U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.2753</td>
</tr>
<tr>
<td>100</td>
<td>0.2119</td>
</tr>
<tr>
<td>120</td>
<td>0.1858</td>
</tr>
<tr>
<td>150</td>
<td>0.1494</td>
</tr>
<tr>
<td>180</td>
<td>0.1249</td>
</tr>
<tr>
<td>200</td>
<td>0.1126</td>
</tr>
</tbody>
</table>

Η καλύτερη μορφή ενέργειας είναι αυτή που εξοικονομούμε (αριθμητική σύνδεση μόνωσης - μηδενικές απώλειες).
Το δάπεδο θα αποτελείται από μονωτικό υλικό dow, το υλικό οποίο αποτελείται είναι εξηλεσμένη πολυστερίνη. Από το δάπεδο έχουμε μεγάλες απώλειες λόγω του ότι η ψύξη έχει κατεύθυνση προς τα κάτω, έτσι πρέπει να έχουμε καλή μόνωση. Η σειρά των υλικών που χρησιμοποιούμε είναι η εξής:

Αρχικά τοποθετούμε πάνω σε πλάκα τσιμέντου του κτιρίου το ασφαλτόπανο για την υγρασία, ύστερα τοποθετούμε τα dow έτσι ώστε στις άκρες να έρχονται σε επαφή με τον αφρό των πάνελ, αφού έχουμε αφαιρέσει την λαμαρίνα, για να αποφύγουμε τις θερμογέφυρες, και στην συνέχεια ρίχνουμε το τσιμέντο.
Στην περίπτωση που οι εξωτερικές επιφάνειες του θαλάμου είναι άμεσα εκτεθειμένες στην ηλιακή ακτινοβολία, κατά τον υπολογισμό του απαιτούμενου ψυκτικού φορτίου πρέπει να ληφθεί υπόψη και το ποσό της θερμότητας, που προέρχεται από την ηλιακή ακτινοβολία και το οποίο τελικά φτάνει στον ψυκτικό θάλαμο. Ένα μέρος της προσπίπτουσας ακτινοβολίας ανακλάται προς το περιβάλλον, ενώ το υπόλοιπο απορροφάται από τα δομικά στοιχεία και μεταφέρεται στο εσωτερικό του θαλάμου. Με την επιλογή κατάλληλων υλικών και χρωματισμών των εξωτερικών επιφανειών ενός θαλάμου είναι δυνατό να περιοριστούν σημαντικά τα θερμικά φορτία που προέρχονται από την προσπίπτουσα ακτινοβολία.

Το ποσό της θερμότητας της ηλιακής ακτινοβολίας που εισέρχεται τελικά εντός του θαλάμου λαμβάνεται υπόψη απλά με κατάλληλη προσαύξηση της θερμοκρασιακής διαφοράς ΔΤ μεταξύ περιβάλλοντα και εσωτερικού χώρου του θαλάμου, ως εξής:

<table>
<thead>
<tr>
<th>Τύπος επιφάνειας</th>
<th>Ανατολικός τοίχος</th>
<th>Νότιος τοίχος</th>
<th>Δυτικός τοίχος</th>
<th>Πάτωμα</th>
<th>Οροφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σκούρα-dark (π.χ. επικάλυψη πίσως)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Μέτρια σκούρα-medium (Ξύλο, τούβλο,τσιμέντο, κόκκινος ή γκρι ή πράσινος χρωματισμός)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ανοιχτόχρωμη-light (Ασπρή ήχα, ανοιχτόχρωμο τσιμέντο, άσπρος χρωματισμός)</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
5.2.2 Φορτίο ψύξης ή κατάψυξης προϊόντων - (Product load)

Τα πρωτογενή φορτία ψύξης των προϊόντων που εισάγονται και διατηρούνται στο ψυκτικό θάλαμο ανταποκρίνονται σε δύο κατηγορίες προέλευσης θερμότητας:

1. Θερμότητα που πρέπει να αφαιρεθεί από τα προϊόντα ώστε αυτά να αποκτήσουν την επιθυμητή θερμοκρασία αποθήκευσης.
2. Θερμότητα που παράγεται από τα προϊόντα κατά την αποθήκευσή τους. Αυτή η ιδιότητα των φρούτων και των λαχανικών είναι γνωστή ως θερμότητα αναπνοής και εμφανίζεται σε θερμοκρασίες αποθήκευσης μεγαλύτερες της στερεοποίησης.

Στην περίπτωση αποθήκευσης εντός του θαλάμου συσκευασμένων προϊόντων με μεγάλο ποσοστό βάρους συσκευασίας ως προς το βάρος του προϊόντος, πρέπει επίσης να ληφθεί υπόψη κατά τον υπολογισμό του ψυκτικού φορτίου του θαλάμου και η θερμοχωρητικότητα της συσκευασίας και κατά συνέπεια το φορτίο ψύξης αυτής.

Η ποσότητα της θερμότητας που πρόκειται να απομακρυνθεί από το προϊόν υπολογίζεται ως εξής:

1. Θερμότητα που απομακρύνεται για την ψύξη από την αρχική σε θερμοκρασία υψηλότερη της στερεοποίησης:

 \[Q_{\text{ΠΡ1}} = m \times C_{\text{ΡΑΝΩ}} \times (T_{\text{ΕΙΣ}} - T_2) \]

2. Θερμότητα που απομακρύνεται για την ψύξη από την αρχική θερμοκρασία σε αυτή της στερεοποίησης:

 \[Q_{\text{ΠΡ2}} = m \times C_{\text{ΡΑΝΩ}} \times (T_{\text{ΕΙΣ}} - T_f) \]

3. Θερμότητα απομάκρυνσης για τη στερεοποίηση του προϊόντος:

 \[Q_{\text{ΠΡ3}} = m \times Q_{\text{LAT}} \]

4. Θερμότητα που απομακρύνεται από τη θερμοκρασία στερεοποίησης έως την επιθυμητή θερμοκρασία κατάψυξης:

 \[Q_{\text{ΠΡ4}} = m \times C_{\text{ΡΚΑΤΩ}} \times (T_f - T_3) \]

Όπου:

\[m = \text{μάζα προϊόντος ημερήσια (kg)} \]
\[C_{\text{ΡΑΝΩ}} = \text{ειδική θερμοχωρητικότητα άνω του σημείου στερεοποίησης (kJ / kg* °C)} \]
\[C_{\text{ΡΚΑΤΩ}} = \text{ειδική θερμοχωρητικότητα κάτω του σημείου στερεοποίησης (kJ / kg* °C)} \]
\[T_{\text{ΕΙΣ}} = \text{θερμοκρασία προϊόντος κατά την προσαγωγή του στον θάλαμο (°C)} \]
\[T_2 = \text{θερμοκρασία αποθήκευσης προϊόντος μεγαλύτερη της στερεοποίησης (°C)} \]
\[T_f = \text{θερμοκρασία στερεοποίησης προϊόντος (°C)} \]
\[T_3 = \text{θερμοκρασία αποθήκευσης προϊόντος μικρότερη της στερεοποίησης (°C)} \]
\[Q_{\text{LAT}} = \text{λανθάνουσα θερμότητα προϊόντος (kJ / kg)} \]
Το ψυκτικό φορτίο που απαιτείται για την επίτευξη των παραπάνω καθορίζεται από το χρόνο που αφιερώνεται για την απομάκρυνση της θερμότητας. Ο χρόνος αυτός προϋποθέτει ότι το προϊόν είναι σωστά τοποθετημένο ώστε να επιτυγχάνεται ο βέλτιστος ρυθμός ψύξης.

Το φορτίο αυτό ορίζεται:

ΣΥΝΤΗΡΗΣΗ

\[Q_{Пp} = \frac{Q_{ПP1}}{3600 \times n} \]

ΚΑΤΑΨΥΞΗ

\[Q_{Пp} = \frac{Q_{ПP2} + Q_{ПP3} + Q_{ПP4}}{3600 \times n} \]

Όπου:

- \(Q_{Пp} \) = μέσο ψυκτικό φορτίο προϊόντων (kW)
- \(n \) = χρόνος ψύξης – κατάψυξης προϊόντος (h)
5.2.3 Ψυκτικό φορτίο εσωτερικής λειτουργίας - (Internal load)

Το εσωτερικό φορτίο λειτουργίας καλείται να αντιμετωπίσει τη θερμότητα που παράγεται από:

1. Τον ηλεκτρολογικό εξοπλισμό
2. Τα ανυψωτικά μηχανήματα
3. Το εργατικό προσωπικό

5.2.3.1 Φορτίο ηλεκτρολογικού εξοπλισμού

\[Q_Φ = Α * LL \]

όπου:

\(Q_Φ \) = ψυκτικά φορτία από φωτισμό (Watt)
\(Α \) = εμβαδόν επιφάνειας οροφής (m²)
\(LL \) = επίπεδο φωτισμού (Light Level) (W/m²)

5.2.3.2 Φορτίο από κινητήρες

\[Q_κ = N_ο * P_ο \]

όπου:

\(Q_κ \) = ψυκτικά φορτία από κινητήρες (kW)
\(N_ο \) = αριθμός ανυψωτικών μηχανημάτων
\(P_ο \) = ονομαστική ισχύς μηχανήματος (kW)

5.2.3.3 Φορτίο εργατικού προσωπικού

\[Q_{\text{ATOMΩΝ}} = N_{\text{PEOPLE}} * (272 – 6 * Tin) \]

όπου:

\(Q_{\text{ATOMΩΝ}} \) = ψυκτικά φορτία από άτομα (kW)
\(N_{\text{PEOPLE}} \) = αριθμός ατόμων που εργάζονται μέσα στον θάλαμο
\(Tin \) = εσωτερική θερμοκρασία ψυκτικού θαλάμου (°C)

Στην περίπτωση που η εργασία τους είναι έντονη, δηλαδή εισέρχονται και εξέρχονται συνεχώς στο θάλαμο, το αποτέλεσμα της παραπάνω εξίσωσης πολλαπλασιάζεται με ένα συντελεστή περί το 1.25.
5.2.4 Ψυκτικό φορτίο εναλλαγών αέρα

Το ψυκτικό φορτίο που απαιτείται για την αντιμετώπιση του θερμικού κέρδους από τη διείσδυση αέρα στους ψυκτικούς θαλάμους, μπορεί να αποτέλεσε το μισό του συνολικού. Επομένως, απαιτείται ιδιαίτερη προσοχή κατά τον υπολογισμό του για την αποφυγή αστοχού. Η συχνότητα με τη οποία γίνονται οι εναλλαγές αέρα εξαρτάται από το είδος του αποθηκευμένου προϊόντος. Για την εναλλαγή χρησιμοποιείται είτε ατμοσφαιρικός αέρας είτε φιλτραρισμένος αέρας μέσω αεραγωγών είτε μέσω των θυρών του θαλάμου.

\[Q_{AEPI} = \frac{V}{v} \times z \times (H_{\text{εισ}} - H_{\text{in}}) \]

Όπου:

\[Q_{AEPI} = \text{ψυκτικά φορτία εναλλαγών αέρα (kJ)} \]
\[V = \text{όγκος θαλάμου (m}^3) \]
\[v = \text{ειδικός όγκος αέρα που εισέρχεται στο θάλαμο (m}^3/\text{kg)} \]
\[z = \text{εναλλαγές αέρα ανά ώρα} \]
\[H_{\text{εισ}} = \text{ενθαλπία αέρα που εισέρχεται στον θάλαμο (kJ / kg)} \]
\[H_{\text{in}} = \text{ενθαλπία αέρα μέσα στον θάλαμο (kJ / kg)} \]

Για να βρούμε την ισχύ του φορτίου σε (kW) έχουμε:

\[Q_{AEF} = \frac{Q_{AEPI}}{3600 \text{sec}} \text{ (kW)} \]

Όπου:

\[Q_{AEF} = \text{ψυκτικά φορτία εναλλαγών αέρα (kW)} \]
5.2.5 Ψυκτικό φορτίο που σχετίζεται με τον εξοπλισμό

Το θερμικό κέρδος που συνδέεται με την λειτουργία του εξοπλισμού ψύξης αποτελείται από:

- Τους θερμαντήρες ή ξηραντήρες του αέρα σε περιπτώσεις όπου επιθυμείται μείωση της σχετικής υγρασίας.
- Θερμότητα που εκπέμπεται από μονάδες που βρίσκονται τοποθετημένες εντός του θαλάμου όπως είναι οι καταψύκτες.
- Θερμότητα που εκπέμπεται από την απόψυξη των μονάδων fan-coil ή των καταψυκτών.

Για παράδειγμα, σε περίπτωση που ένας καταψύκτης βρίσκεται εντός του θαλάμου, ο οποίος λειτουργεί σε θερμοκρασίες κατάψυξης, το θερμικό φορτίο που προστίθεται και καλείται να αντιμετωπιστεί είναι το 25 % της ονομαστικής ισχύος του καταψύκτη.

Επίσης, για τους ανεμιστήρες τους στοιχείου και τις αντιστάσεις που έχει για την απόψυξη το θερμικό κέρδος ανέρχεται στο 5 – 15 % του συνολικού φορτίου ανάλογα με το πόσο έντονη είναι η λειτουργία τους, διότι δεν ξέρουμε ποιο στοιχείο θα επιλέξουμε για να γνωρίζουμε την ισχύ των ανεμιστήρων.

5.3 Συντελεστής ασφαλείας

Γενικά, το υπολογιζόμενο ψυκτικό φορτίο αυξάνεται κατά ένα συντελεστή 10 -15% για να επιτρέπονται πιθανές αποκλίσεις μεταξύ των κριτηρίων σχεδιασμού και της πραγματικής λειτουργίας. Οι αποκλίσεις αυτές οφείλονται σε ορισμένες έκτασες ανάγκες καθώς και σε ακραίες δυσμενείς καιρικές συνθήκες (παρατεταμένοι καύσωνες).
ΚΕΦΑΛΑΙΟ 6ο – ΜΕΛΕΤΗ ΨΥΓΕΙΩΝ ΣΥΝΤΗΡΗΣΗΣ ΚΑΙ ΚΑΤΑΨΥΧΗΣ ΠΡΟΪΟΝΤΩΝ

6.1 Περιγραφή

Στην περιοχή της Αργολίδας στην Πελοπόννησο και συγκεκριμένα στο Βιομηχανική Περιοχή πρόκειται να φτιαχθεί μια μονάδα παραγωγής κρέατος. Η τοποθεσία αυτή ενδείκνυται για την στέγαση βιομηχανιών διότι έχει εύκολη πρόσβαση από τους μεταφορείς των κρεάτων. Όλα τα κρέατα στις συντηρήσεις ψύχονται στους 0 °C ενώ ο χώρος επεξεργασίας κλιματίζεται στους 12 °C, επίσης υπάρχει μία κατάψυξη που βρίσκεται σε θερμοκρασία -18 °C και μια βαθειά κατάψυξη (τούνελ) που φτάνει στους -35 °C. Επιπλέον, στις ράμπες εκφόρτωσης υπάρχουν ειδικά στέγαστρα τα οποία προστατεύουν τις πλευρές αυτές (Βόρεια και Νότια) από τις δυσμενείς καιρικές συνθήκες. Στους θάλαμους θα χρησιμοποιήσουμε διαφορετικά πάνελ, ανάλογα την θερμοκρασία που χρειαζόμαστε. Επίσης στα σημεία που διαχωρίζονται δύο θάλαμοι θα τοποθετείτε το πάνελ με το μεγαλύτερο πάχος.

6.2 Μελέτη ψυκτικών θαλάμων

6.2.1 Θάλαμος 1ος Νωπά χοιρινά

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 5 * 6 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (Tin): 0 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων

Τοιχοποίηση: QT = U * A * ΔΤ

ΒΟΡΡΑ: QB = U * A * (Tout – Tin) => QB = 0.2219 \frac{W}{m^2\cdot{}°C} \cdot 24 m² \cdot (12 – 0) °C => QB = 63.91 W

ΝΟΤΟΣ: QN = U * A * (Tout – Tin) => QN = 0.2219 \frac{W}{m^2\cdot{}°C} \cdot 24 m² \cdot (12 – 0) °C => QN = 63.91 W

ΑΝΑΤΟΛΗ: QA = U * A * (Tout – Tin) => QA = 0.2219 \frac{W}{m^2\cdot{}°C} \cdot 20 m² \cdot (35 – 0) °C => QA = 155.33 W
ΔΥΣΗ:
\[Q_{Δ} = U \times A \times (T_{\text{out}} - T_{\text{in}}) \Rightarrow Q_{Δ} = 0.2219 \frac{W}{m^2°C} \times 20 \, m^2 \times (12 - 0) \, °C \Rightarrow Q_{Δ} = 53,26 \, W \]

ΟΡΟΦΗ:
\[Q_{Ο} = U \times A \times (T_{\text{out}} - T_{\text{in}}) \Rightarrow Q_{Ο} = 0.2219 \frac{W}{m^2°C} \times 30 \, m^2 \times (35 - 0) \, °C \Rightarrow Q_{Ο} = 233 \, W \]

ΔΑΠΕΔΟ:
\[Q_{Π} = U \times A \times (T_{\text{out}} - T_{\text{in}}) \Rightarrow Q_{Π} = 0.2334 \frac{W}{m^2°C} \times 30 \, m^2 \times (16 - 0) \, °C \Rightarrow Q_{Π} = 112,03 \, W \]

\[Q_{T} = Q_{θ} + Q_{N} + Q_{Δ} + Q_{Ο} + Q_{Π} \Rightarrow Q_{T} = 681,44 \, W / 1000 \Rightarrow Q_{T} = 0,6814 \, kW \times 24 \, h \Rightarrow Q_{T} = 16,35 \, kWh/day \]

\[Q_{ΠΡ} = \psiυκτικό \, φορτίο \, προϊόντων \]
\[Q_{ΠΡ1} = m \times C_{p,\text{ΑΝΩ}} \times (T_{\text{εισ}} - T_{2}) \Rightarrow Q_{ΠΡ1} = 1000 \, kg \times 2,47 \frac{kJ}{kg°C} \times (1 - 0) \, °C \Rightarrow Q_{ΠΡ1} = 2470 \, kJ \]
\[Q_{ΠΡ} = \frac{2470 \, kJ}{3600 \times 6 \, h} \Rightarrow Q_{ΠΡ} = 0,114 \, kW \times 24 \, h \Rightarrow Q_{ΠΡ} = 2,74 \, kWh/day \]

\[Q_{ΠΡ} = \psiυκτικό \, φορτίο \, προϊόντων \]
\[m = \text{μάζα προϊόντος ημερήσια (kg)} \]
\[T_{\text{εισ}} = \text{θερμοκρασία προϊόντος κατά την προσαγωγή του στον θάλαμο (°C)} \]
\[T_{2} = \text{θερμοκρασία αποθήκευσης προϊόντος μεγαλύτερη της στερεοποίησης (°C)} \]
\[C_{p,\text{ΑΝΩ}} = \text{ειδική θερμοχωρητικότητα άνω του σημείου στερεοποίησης (kJ / kg* °C)} \]
Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[
Q_{AEP} = \frac{V \left(m^3 \right)}{v \left(m^3/kg \right)} \times z \times (H_{\text{εισ}} - H_{\text{in}}) \frac{kJ}{kg} \Rightarrow Q_{AEP} = \frac{120 \left(m^3 \right)}{0.818 \left(m^3/kg \right)} \times 1 \times (31 - 8) \frac{kJ}{kg}
\]

=> \(Q_{AEP} = 3.374,1 \) kJ => \(Q_{AEP} = \frac{3374,1 \text{kJ}}{3600 \text{sec}} \) => \(Q_{AEP} = 0.94 \) kW * 24 h => \(Q_{AEP} = 22,56 \text{ kWh/day} \)

Όπου :

\(Q_{AEP} = \) ψυκτικά φορτία εναλλαγών αέρα (kWh/day)

\(V = \) όγκος θαλάμου (m³)

\(v = \) ειδικός όγκος αέρα που εισέρχεται στο θάλαμο (m³/kg)

\(z = \) εναλλαγές αέρα ανά ώρα

\(H_{\text{εισ}} = \) ενθαλπία αέρα που εισέρχεται στον θάλαμο (kJ/kg)

\(H_{\text{in}} = \) ενθαλπία αέρα μέσα στον θάλαμο (kJ/kg)

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[
Q_{\Phi} = A \left(m^2 \right) \times LL \left(W/m^2 \right) \Rightarrow Q_{\Phi} = 30 \left(m^2 \right) \times 10 \left(W/m^2 \right) \Rightarrow Q_{\Phi} = 300 W \Rightarrow Q_{\Phi} = 0.300 \text{ kW} \times 1 \text{ h/day}
\]

=> \(Q_{\Phi} = 0,300 \text{ kWh/day} \)

Όπου :

\(Q_{\Phi} = \) ψυκτικά φορτία από φωτισμό (kWh/day)

\(A = \) εμβαδόν επιφάνειας οροφής (m²)

\(LL = \) επίπεδο φωτισμού (Light Level) (W/m²)

Επειδή πολλές φορές δεν γνωρίζουμε την ισχύ του φωτισμού παίρνουμε μια τιμή ίση με 10 (W/m²)
Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ATOM}} = \text{NoPEOPLE} \times (272 - 6 \times T_{\text{in}}) \Rightarrow Q_{\text{ATOM}} = 2 \times (272 - 6 \times 0) \Rightarrow Q_{\text{ATOM}} = 544 \text{ W } 1 \text{ h / day} \]

\[\Rightarrow Q_{\text{ATOM}} = 0.544 \text{ kWh / day} \]

Όπου :

\[Q_{\text{ATOM}} = \text{ψυκτικά φορτία από άτομα (kWh / day)} \]

\[\text{NoPEOPLE} = \text{αριθμός ατόμων που εργάζονται μέσα στον θάλαμο} \]

\[T_{\text{in}} = \text{εσωτερική θερμοκρασία ψυκτικού θαλάμου (°C)} \]

*Στην περίπτωση που η εργασία τους είναι πολύ έντονη, δηλαδή εισέρχονται και εξέρχονται συνεχώς στον θάλαμο, το αποτέλεσμα τις παραπάνω εξίσωσης πολλαπλασιάζεται με ένα συντελεστή περί το 1.25

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους

ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 1

\[Q_{\text{ΣΥΝ}} = (Q_T + Q_{\text{ΠΡ}} + Q_{\text{ΑΕΡ}} + Q_{\Phi} + Q_{\text{ATOM}}) \times 1.10 \Rightarrow \]

\[Q_{\text{ΣΥΝ}} = (16.35 + 2.74 + 22.56 + 0.300 + 0.544) \text{ kWh / day} \times 1.10 \Rightarrow Q_{\text{ΣΥΝ}} = 46.7 \text{ kWh / day} \]

*Το 1.10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε :

\[Q_{\text{ΣΥΝ}} = \frac{46.7 \text{ kWh / day}}{10 \text{ h}} \Rightarrow Q_{\text{ΣΥΝ}} = 4.67 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1.15 και παίρνουμε την τελική ισχύ:

\[Q_{\text{ΣΥΝ}} = 4.67 \text{ kW} \times 1.15 \Rightarrow Q_{\text{ΣΥΝ}} = 5.4 \text{ kW} \]
6.2.2 Θάλαμος 2ος Χώρος επεξεργασίας χοιρινών

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60%
Διαστάσεις θαλάμου: 6 * 10,45 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_in): 12 °C
Σχετική υγρασία εντός θαλάμου: 86%

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία: \(Q = U \times A \times \Delta T \)

ΒΟΡΡΑΣ: \(Q_B = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_B = 0.2219 \times \frac{W}{m^2 \cdot °C} \times 24 m^2 \times (35 - 12) °C \Rightarrow Q_B = 122,49 W \)

ΝΟΤΟΣ: \(Q_N = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_N = 0.2219 \times \frac{W}{m^2 \cdot °C} \times 24 m^2 \times (12 - 0) °C \Rightarrow Q_N = 63.91 W \)

ΑΝΑΤΟΛΗ: \(Q_A = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_A = 0.2219 \times \frac{W}{m^2 \cdot °C} \times 41.8 m^2 \times (35 - 12) °C \Rightarrow Q_A = 213,33 W \)

ΔΥΣΗ: \(Q_Δ = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_Δ = 0.2219 \times \frac{W}{m^2 \cdot °C} \times 41.8 m^2 \times (12 - 12) °C \Rightarrow Q_Δ = 0 W \)

ΟΡΟΦΗ: \(Q_Ο = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_Ο = 0.2219 \times \frac{W}{m^2 \cdot °C} \times 62.7 m^2 \times (35 - 12) °C \Rightarrow Q_Ο = 320 W \)

ΔΑΠΕΔΟ: \(Q_Π = U \times A \times (T_{out} - T_{in}) \Rightarrow Q_Π = 0.2334 \times \frac{W}{m^2 \cdot °C} \times 62.7 m^2 \times (16 - 12) °C \Rightarrow Q_Π = 58,54 W \)

\[Q_T = Q_B + Q_N + Q_A + Q_ο + Q_Π \Rightarrow Q_T = 778,27 W / 1000 \Rightarrow Q_T = 0,7783 kW \times 24 h \Rightarrow \]

\[Q_T = 18,68 kWs/\text{day} \]

Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί δεν έχουμε αποθήκευση στο συγκεκριμένο χώρο αλλά επεξεργασία

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

Φορτία από αερισμό δεν έχουμε γιατί στον μέσα θάλαμο και στον διάδρομο όπου υπάρχει η πόρτα έχουμε ίσιες θερμοκρασίες
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q\Phi = A \frac{\text{m}^2}{\text{LL} \frac{\text{W}}{\text{m}^2}} \Rightarrow Q\Phi = 62,7\frac{\text{m}^2}{10 \frac{\text{W}}{\text{m}^2}} \Rightarrow Q\Phi = 627 \frac{\text{W}}{} \]
\[= 0,627 \text{ kW} \]
\[\times 8 \text{ h/day} \]
\[= 5,02 \text{ kW} \bullet \text{h/day} \]

*Επειδή πολλές φορές δεν γνωρίζουμε την ισχύ του φωτισμού παίρνουμε μια τιμή ίση με 10 (W/m²)

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{ATOMON} = N_{PEOPLE} \frac{272 - 6 \times T_{in}}{} \Rightarrow Q_{ATOMON} = 6 \times (272 - 6 \times 12) \Rightarrow Q_{ATOMON} = 1200 \frac{\text{W}}{} \]
\[= 9,60 \text{ kW} \bullet \text{h/day} \]

*Στην περίπτωση που η εργασία τους είναι πολύ έντονη, δηλαδή εισέρχονται και εξέρχονται συνεχώς στον θάλαμο, το αποτέλεσμα της παραπάνω εξίσωσης πολλαπλασιάζεται με ένα συντελεστή περί το 1,25

Υπολογισμός ψυκτικών φορτίων από κινητήρες

\[Q_k = N \frac{\text{Watt} \bullet \text{Hours}}{\text{Watt} \bullet \text{Hours}} \]

Φεταριστική μηχανή: \[Q_{kφ} = 1 \times 1,12 \frac{\text{kW}}{} \times 4 \text{ h/day} \Rightarrow Q_{kφ} = 4,48 \frac{\text{kWh}}{\text{day}} \]

Βαρέλα μάλαξης: \[Q_{kβ} = 1 \times 6,5 \frac{\text{kW}}{} \times 4 \text{ h/day} \Rightarrow Q_{kβ} = 26 \frac{\text{kWh}}{\text{day}} \]

\[Q_k = Q_{kφ} + Q_{kβ} => Q_k = 4,48 + 26 => Q_k = 30,48 \frac{\text{kWh}}{\text{day}} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 2

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΡ} + Q_{ΑΕΡ} + Q_Φ + Q_{ΑΤΟΜΩΝ} + Q_κ) \times 1,10 = \]

\[Q_{ΣΥΝ} = (18.68 + 0 + 0 + 5.02 + 9.60 + 30.48) \, kWh/\text{day} \times 1.10 = Q_{ΣΥΝ} = 70.16 \, kWh/\text{day} \]

*Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{70.16 \, kWh/\text{day}}{10 \, h} = Q_{ΣΥΝ} = 7.02 \, kW \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφάλειας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 7.51 \, kW \times 1.15 = Q_{ΣΥΝ} = 8.61 \, kW \]
6.2.3 Θάλαμος 3ος Νοσάκοτόπουλα

Συνθήκες περιβάλλοντος:
- Θερμοκρασία ξηρής σφαίρας: 35 °C
- Σχετική υγρασία: 60%

Διαστάσεις θαλάμου:
- 5 * 6 * 4 m³

Εσωτερική θερμοκρασία θαλάμου (T_in): 0 °C
Σχετική υγρασία εντός θαλάμου: 86%

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

\[Q_T = U * A * \Delta T \]

\[Q_T = 16,35 \text{ kW h/day} \]

- Τα ψυκτικά φορτία από την τοιχοποιία είναι ακριβώς ίδιες με τον ΘΑΛΑΜΟ 1

Υπολογισμός ψυκτικών φορτίων προϊόντων

Προϊόν 1:

\[Q_{\Pi 1} = m * C_{p\omega} * (T_{\epsilon\sigma} - T_2) \]

\[Q_{\Pi 1} = 1000 \text{ kg} * 3,68 \frac{kJ}{kg \cdot °C} * (1 - 0) °C \Rightarrow Q_{\Pi 1} = 3680 \text{ kJ} \]

\[Q_{\Pi P} = \frac{3680 \text{ kJ}}{3600 \text{ h}} \Rightarrow Q_{\Pi P} = 1000 \text{ kg} * 0,17 \text{ kW} * 24 \text{ h} \Rightarrow Q_{\Pi P} = 4,08 \text{ kW h/day} \]

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{AER}} = \frac{V (m^3)}{v (m^3/kg)} * z * (H_{\epsilon\sigma} - H_{\text{in}}) \frac{kJ}{kg} \]

\[Q_{\text{AER}} = 22,56 \text{ kW h/day} \]

- Τα ψυκτικά φορτία εναλλαγών αέρα είναι ίδια με τον ΘΑΛΑΜΟ 1

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q_{\Phi} = A (m^2) * LL (W/m^2) \Rightarrow Q_{\Phi} = 0,300 \text{ kW h/day} \]

- Τα ψυκτικά φορτία από φωτισμό είναι ίδια με τον ΘΑΛΑΜΟ 1

37
Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = N_{\text{PEOPLE}} \times (272 - 6 \times T_{\text{in}}) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 0.544 \text{ kWh/day} \]

- Τα ψυκτικά φορτία από άτομα είναι ίδια με τον ΘΑΛΑΜΟ 1

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους

\[Q_{\text{ΣΥΝ}} = (Q_{T} + Q_{\text{ΠΡ}} + Q_{\text{ΑΕΡ}} + Q_{\Phi} + Q_{\text{ΑΤΟΜΩΝ}}) \times 1,10 \Rightarrow Q_{\text{ΣΥΝ}} = 48,2 \text{ kWh/day} \]

ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 3

\[Q_{\text{ΣΥΝ}} = (16,35 + 4,08 + 22,56 + 0,300 + 0,544) \times 1,10 = 48,2 \text{ kWh/day} \]

\[Q_{\text{ΣΥΝ}} = \frac{48,2 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{\text{ΣΥΝ}} = 4,82 \text{ kW} \]

Ο συμπιεστής μας θέλουμε να δουλέψει 10 ώρες την ημέρα, οπότε:

Στέλνουμε πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{\text{ΣΥΝ}} = 4,82 \text{ kW} \times 1,15 \Rightarrow Q_{\text{ΣΥΝ}} = 5,5 \text{ kW} \]
6.2.4 Θάλαμος 4ος Χώρος επεξεργασίας κοτόπουλων

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 6 * 10.45 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (Tin): 12 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία: QT = U * A * ΔΤ

ΒΟΡΡΑΣ: QB = U * A * (Tout - Tin) => QN = 0.2219 \frac{W}{m^2°C} * 24 m² * (12 - 0) °C => QN = 63.91 W

ΝΟΤΟΣ: QN = U * A * (Tout - Tin) => QN = 0.2219 \frac{W}{m^2°C} * 24 m² * (35 - 12) °C => QN = 122.49 W

ΑΝΑΤΟΛΗ: QA = U * A * (Tout - Tin) => QA = 0.2219 \frac{W}{m^2°C} * 41.8 m² * (35 - 12) °C => QA = 213.33 W

ΔΥΣΗ: QΔ = U * A * (Tout - Tin) => QA = 0.2219 \frac{W}{m^2°C} * 41.8 m² * (12 - 12) °C => QΔ = 0 W

ΟΡΟΦΗ: QΟ = U * A * (Tout - Tin) => QΟ = 0.2219 \frac{W}{m^2°C} * 62.7 m² * (35 - 12) °C => QΟ = 320 W

ΔΑΠΕΔΟ: QΠ = U * A * (Tout - Tin) => QΠ = 0.2334 \frac{W}{m^2°C} * 62.7 m² * (16 - 12) °C => QΠ = 58.54 W

• QT = QN + QA + QΔ + QΟ + QΠ => QT = 778.27 W / 1000 => QT = 0.7783 kW * 24 h => QT = 18.68 kWh / day

Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί δεν έχουμε αποθήκευση στο συγκεκριμένο χώρο αλλά επεξεργασία.

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

Φορτία από αερισμό δεν έχουμε γιατί στον μέσα θάλαμο και στον διάδρομο όπου υπάρχει η πόρτα έχουμε ίσες θερμοκρασίες.
Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[\Phi_\text{φ} = A \,(m^2) \times LL \,(W/m^2) \Rightarrow \Phi_\text{φ} = 62,7 \,(m^2) \times 10 \,(W/m^2) \Rightarrow \Phi_\text{φ} = 627 \, W \Rightarrow \Phi_\text{φ} = 0,627 \, kW \times 8 \, h/day \]

\[\Rightarrow \Phi_\text{φ} = 5,02 \, kWh/day \]

Επειδή πολλές φορές δεν γνωρίζουμε την ισχύ του φωτισμού παίρνουμε μια τιμή ίση με 10 \,(W/m^2)

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[\Phi_\text{ΑΤΟΜΩΝ} = N \times (272 \,- \, 6 \times T_{\text{in}}) \Rightarrow \Phi_\text{ΑΤΟΜΩΝ} = 6 \times (272 \,- \, 6 \times 12) \Rightarrow \]

\[\Phi_\text{ΑΤΟΜΩΝ} = 1200W \times 8 \, h/day \Rightarrow \Phi_\text{ΑΤΟΜΩΝ} = 9,60 \, kWh/day \]

Στην περίπτωση που η εργασία τους είναι πολύ έντονη, δηλαδή εισέρχονται και εξέρχονται συνεχώς στον θάλαμο, το αποτέλεσμα της παραπάνω εξίσωσης πολλαπλασιάζεται με ένα συντελεστή περί το 1,25

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 \% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.*

Υπολογισμός ψυκτικών φορτίων από κινητήρες

\[\Phi_k = N \times \text{Watt} \times \text{Hours} \]

Φεταριστική μηχανή : \[\Phi_\text{κφ} = 1 \times 1,12 \, kW \times 4 \, h/day \Rightarrow \Phi_\text{κφ} = 4,48 \, kWh/day \]

Βαρέλα μάλαξης : \[\Phi_\text{κβ} = 1 \times 6,5 \, kW \times 4 \, h/day \Rightarrow \Phi_\text{κβ} = 26 \, kWh/day \]

\[\Phi_k = \Phi_\text{κβ} + \Phi_\text{κφ} \Rightarrow \Phi_k = 4,48 + 26 \Rightarrow \Phi_k = 30,48 \, kWh/day \]
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 4

\[Q_{ΣΥΝ} = (Q_T + Q_Π + Q_{ΑΕΡ} + Q_Φ + Q_{ΑΤΟΜΩΝ} + Q_κ) \times 1,10 \]

\[Q_{ΣΥΝ} = (18,68 + 0 + 0 + 5,02 + 9,60 + 30,48) \ kW/h/day \times 1,10 \Rightarrow Q_{ΣΥΝ} = 70,16 \ kW/h/day \]

Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλέψει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{70,16 \ kW/h/day}{10 \ h} \Rightarrow Q_{ΣΥΝ} = 7,02 \ kW \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 7,02 \ kW \times 1,15 \Rightarrow Q_{ΣΥΝ} = 8,1 \ kW \]
6.2.5 Θάλαμος 5ου Μαρινάρισμα γύρων

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 5 * 5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (Τin): 0 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

ΒΟΡΡΑΣ:

\[Q_B = U \times A \times (T_{out} - T_{in}) \]
\[Q_B = 0.2219 \frac{W}{m^2\cdot°C} \times 20 m^2 \times (35 - 0) °C \]
\[Q_B = 0.6026 kW \times 24 h = 14,46 kWh/day \]

ΝΟΤΟΣ:

\[Q_N = U \times A \times (T_{out} - T_{in}) \]
\[Q_N = 0.2219 \frac{W}{m^2\cdot°C} \times 20 m^2 \times (12 - 0) °C \]
\[Q_N = 53,26 W \]

ΑΝΑΤΟΛΗ:

\[Q_A = U \times A \times (T_{out} - T_{in}) \]
\[Q_A = 0.2219 \frac{W}{m^2\cdot°C} \times 20 m^2 \times (12 - 0) °C \]
\[Q_A = 53,26 W \]

ΔΥΣΗ:

\[Q_Δ = U \times A \times (T_{out} - T_{in}) \]
\[Q_Δ = 0.2219 \frac{W}{m^2\cdot°C} \times 25 m^2 \times (12 - 0) °C \]
\[Q_Δ = 53,26 W \]

ΟΡΟΦΗ:

\[Q_Ο = U \times A \times (T_{out} - T_{in}) \]
\[Q_Ο = 0.2219 \frac{W}{m^2\cdot°C} \times 25 m^2 \times (35 - 0) °C \]
\[Q_Ο = 194,16 W \]

ΔΑΠΕΔΟ:

\[Q_Π = U \times A \times (T_{out} - T_{in}) \]
\[Q_Π = 0.2334 \frac{W}{m^2\cdot°C} \times 25 m^2 \times (16 - 0) °C \]
\[Q_Π = 93,36 W \]

\[Q_T = Q_B + Q_N + Q_A + Q_Δ + Q_Ο + Q_Π \]
\[Q_T = 602,63 W / 1000 \]
\[Q_T = 0.6026 kW \times 24 h = 14,46 kWh/day \]
Για αξιολόγηση των ψυκτικών φορτίων προϊόντων

Χοιρινό

\[Q_{\text{ΠΡ1}} = m \times C_{p\alpha} \times (T_\text{εισ} - T_2) \]

\[Q_{\text{ΠΡ1}} = \frac{2964 \text{kJ}}{3600 \times 3 \text{h}} \Rightarrow Q_{\text{ΠΡ1}} = 0.274 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΠΡ1}} = 6.58 \text{ kWh/day} \]

Κοτόπουλο

\[Q_{\text{ΠΡ1}} = m \times C_{p\alpha} \times (T_\text{εισ} - T_2) \]

\[Q_{\text{ΠΡ1}} = \frac{4416 \text{kJ}}{3600 \times 3 \text{h}} \Rightarrow Q_{\text{ΠΡ1}} = 0.41 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΠΡ1}} = 9.84 \text{ kWh/day} \]

Παραπάνω αξιολογήσαμε το ψυκτικό φορτίο προϊόντων, για χοιρινά και κοτόπουλα διότι ο θάλαμος θα χρησιμοποιείτε εναλλάξ και για τα δύο προϊόντα, οπότε θα πάρουμε το μεγαλύτερο φορτίο από τις δύο περιπτώσεις, για τον υπολογισμό του συνολικού φορτίου.

Για αξιολόγηση των ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{ΑΕΡ}} = \frac{V (m^3)}{v (m^3/kg)} \times z \times (H_\text{εισ} - H_\text{in}) \text{ kJ/kg} \]

\[Q_{\text{ΑΕΡ}} = \frac{100 (m^3)}{0.778 (m^3/kg)} \times 1 \times (31 - 8) \text{ kJ/kg} \]

\[Q_{\text{ΑΕΡ}} = 2956.3 \text{ kJ} \Rightarrow Q_{\text{ΑΕΡ}} = \frac{2956.3 \text{kJ}}{3600 \text{sec}} \Rightarrow Q_{\text{ΑΕΡ}} = 0.822 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΑΕΡ}} = 19.73 \text{ kWh/day} \]

Για αξιολόγηση των ψυκτικών φορτίων από φωτισμό

\[Q_\Phi = A (m^2) \times LL (W/m^2) \Rightarrow Q_\Phi = 25 (m^2) \times 10 (W/m^2) \Rightarrow Q_\Phi = 250 \text{ W} \Rightarrow Q_\Phi = 0.250 \text{ kW} \times 1 \text{ h/day} \]

\[Q_\Phi = 0.250 \text{ kWh/day} \]
Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = N_{\text{PEOPLE}} \times (272 - 6 \times T_{\text{τιμ}}) \]
\[\Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 2 \times (272 - 6 \times 0) \]
\[\Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 544 \text{ W} \times 1 \text{ h/day} \]

\[Q_{\text{ΑΤΟΜΩΝ}} = 0.544 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 -- 15% του συνολικού φορτίου. Ο τυλίγμαν ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.

ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 5

\[Q_{\Sigma} = (Q_T + Q_{\Pi} + Q_{\text{ΑΕΡ}} + Q_{\Phi} + Q_{\text{ΑΤΟΜΩΝ}}) \times 1.10 \]
\[Q_{\Sigma} = (16.35 + 9.84 + 19.73 + 0.250 + 0.544) \text{ kWh/day} \times 1.10 \]
\[\Rightarrow Q_{\Sigma} = 51.38 \text{ kWh/day} \]

Το 1.10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε :

\[Q_{\Sigma} = \frac{51.38 \text{ kWh/day}}{10 \text{ h}} \]
\[\Rightarrow Q_{\Sigma} = 5.14 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1.15 και παίρνουμε την τελική ισχύ:

\[Q_{\Sigma} = 5.14 \text{ kW} \times 1.15 \]
\[\Rightarrow Q_{\Sigma} = 5.9 \text{ kW} \]
6.2.6 Θάλαμος 6ος Χώρος παρασκευής γύρων

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60
Διαστάσεις θαλάμου: 5 * 5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (Τη) : 12 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

ΒΟΡΡΑΣ:

\[Q_B = U \cdot A \cdot (T_{out} - T_{in}) = 0.2219 \cdot \frac{W}{m^2 \cdot °C} \cdot 20 \cdot (35 - 12) °C = 102.08 \text{ W} \]

ΝΟΤΟΣ:

\[Q_N = U \cdot A \cdot (T_{out} - T_{in}) = 0.2219 \cdot \frac{W}{m^2 \cdot °C} \cdot 20 \cdot (12 - 12) °C = 0 \text{ W} \]

ΑΝΑΤΟΛΗ:

\[Q_A = U \cdot A \cdot (T_{out} - T_{in}) = 0.2219 \cdot \frac{W}{m^2 \cdot °C} \cdot 20 \cdot (0 - 12) °C = -53.26 \text{ W} \]

ΔΥΣΗ:

\[Q_Δ = U \cdot A \cdot (T_{out} - T_{in}) = 0.2219 \cdot \frac{W}{m^2 \cdot °C} \cdot 20 \cdot (35 - 12) °C = 102.08 \text{ W} \]

ΟΡΟΦΗ:

\[Q_Ο = U \cdot A \cdot (T_{out} - T_{in}) = 0.2219 \cdot \frac{W}{m^2 \cdot °C} \cdot 25 \cdot (35 - 12) °C = 127.60 \text{ W} \]

ΔΑΠΕΔΟ:

\[Q_Π = U \cdot A \cdot (T_{out} - T_{in}) = 0.2334 \cdot \frac{W}{m^2 \cdot °C} \cdot 25 \cdot (16 - 12) °C = 23.34 \text{ W} \]

\[Q_T = Q_B + Q_N + Q_A + Q_Ο + Q_Π = 301.84 \text{ W} / 1000 = 0.302 \text{ kW} \]

⇒ \[Q_T = 7.25 \text{ kWh}/\text{day} \]
Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί δεν έχουμε αποθήκευση στο συγκεκριμένο χώρο αλλά επεξεργασία για λίγο χρονικό διάστημα κατά το οποίο δεν χάνουν την ψύξη τους, πριν μεταφερθούν στον επόμενο θάλαμο.

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

Φορτία από αερισμό δεν έχουμε γιατί στον μέσο θάλαμο και στον διάδρομο όπου υπάρχει η πόρτα έχουμε ίσιες θερμοκρασίες.

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q\Phi = A \text{ (m}^2\text{)} \times LL \text{ (W/m}^2\text{)} \] => \[Q\Phi = 25(m^2) \times 10 \text{ (W/m}^2\text{)} \] => \[Q\Phi = 250 \text{ W} \] => \[Q\Phi = 0,250 \text{ kW} \times 8 \text{ h/day} \] => \[Q\Phi = 2 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = N_{\text{PEOPLE}} \times (272 – 6 \times T_{\text{in}}) \] => \[Q_{\text{ΑΤΟΜΩΝ}} = 3 \times (272 – 6 \times 12) \] => \[Q_{\text{ΑΤΟΜΩΝ}} = 600 \text{ W} \times 8 \text{ h/day} \] => \[Q_{\text{ΑΤΟΜΩΝ}} = 4,8 \text{ kWh/day} \]

*Στην περίπτωση που η εργασία τους είναι πολύ έντονη, δηλαδή εισέρχονται και εξέρχονται συνεχώς στον θάλαμο, το αποτέλεσμα της παραπάνω εξίσωσης πολλαπλασιάζεται με ένα συντελεστή περί το 1,25

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν έχουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 6

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΡ} + Q_{ΑΕΡ} + Q_{Φ} + Q_{ΑΤΟΜΩΝ}) \times 1,10 \Rightarrow \]

\[Q_{ΣΥΝ} = (7,25 + 0 + 0 + 2 + 4,8) \text{ kWh/day} \times 1,10 \Rightarrow Q_{ΣΥΝ} = 15,45 \text{ kWh/day} \]

Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλει να δουλέψει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{15,45 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{ΣΥΝ} = 1,55 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 1,55 \text{ kW} \times 1,15 \Rightarrow Q_{ΣΥΝ} = 1,8 \text{ kW} \]
6.2.7 Θάλαμος 7ος Φόρμες συμβάσεις

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60%
Διαστάσεις θαλάμου: 3,5 * 6,5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_in): -5 °C
Σχετική υγρασία εντός θαλάμου: 86%

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποίεση:

ΒΟΡΡΑΣ: \[Q_B = U \times A \times (T_{out} - T_{in}) \] \[Q_B = 0.2219 \frac{W}{m^2 \cdot °C} \times 26 m^2 \times (12 - (-5)) °C \] \[Q_B = 98,1 W \]

ΝΟΤΟΣ: \[Q_N = U \times A \times (T_{out} - T_{in}) \] \[Q_N = 0.2219 \frac{W}{m^2 \cdot °C} \times 26 m^2 \times (-35 - (-5)) °C \] \[Q_N = -173,1 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U \times A \times (T_{out} - T_{in}) \] \[Q_A = 0.2219 \frac{W}{m^2 \cdot °C} \times 14 m^2 \times (12 - (-5)) °C \] \[Q_A = 52,8 W \]

ΔΥΣΗ: \[Q_Δ = U \times A \times (T_{out} - T_{in}) \] \[Q_Δ = 0.2219 \frac{W}{m^2 \cdot °C} \times 14 m^2 \times (12 - (-5)) °C \] \[Q_Δ = 52,8 W \]

ΟΡΟΦΗ: \[Q_Ο = U \times A \times (T_{out} - T_{in}) \] \[Q_Ο = 0.2219 \frac{W}{m^2 \cdot °C} \times 22,75 m^2 \times (35 - (-5)) °C \] \[Q_Ο = 202 W \]

ΔΑΠΕΔΟ: \[Q_Π = U \times A \times (T_{out} - T_{in}) \] \[Q_Π = 0.2334 \frac{W}{m^2 \cdot °C} \times 22,75 m^2 \times (16 -(-5)) °C \] \[Q_Π = 111,5 W \]

\[Q_T = Q_B + Q_N + Q_A + Q_Δ + Q_Ο + Q_Π \]
\[Q_T = 344,1 W / 1000 \]
\[Q_T = 0,344 kW \]
\[Q_T = 8,25 kWh/day \]
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Υπολογισμός ψυκτικών φορτίων προϊόντων

Χοιρινό

\[Q_{\text{ΠΡ2}} = m \times C_{p\text{ΑΝΩ}} \times (T_{\text{εισ}} - T_f) \]
\[Q_{\text{ΠΡ2}} = 600 \text{ kg} \times 2,47 \frac{kJ}{kg\text{°C}} \times (3 - (-2,2)) ^{°C} \Rightarrow Q_{\text{ΠΡ2}} = 7,706,4 \text{ kJ} \]

\[Q_{\text{ΠΡ3}} = m \times Q_{\text{lat}} \]
\[Q_{\text{ΠΡ3}} = 600 \text{ kg} \times 243 \frac{kJ}{kg\text{°C}} \Rightarrow Q_{\text{ΠΡ3}} = 145,800 \text{ kJ} \]

\[Q_{\text{ΠΡ4}} = m \times C_{p\text{ΚΑΤΩ}} \times (T_f - T_3) \]
\[Q_{\text{ΠΡ4}} = 600 \text{ kg} \times 1,38 \frac{kJ}{kg\text{°C}} \times (-2,2 - (-5)) ^{°C} \Rightarrow Q_{\text{ΠΡ4}} = 2,318,4 \text{ kJ} \]

\[Q_{\text{ΠΡ}} = \frac{Q_{\text{ΠΡ2}} + Q_{\text{ΠΡ3}} + Q_{\text{ΠΡ4}}}{3600+8h} \]
\[Q_{\text{ΠΡ}} = 5,41 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΠΡ}} = 129,8 \text{ kWh/day} \]

Κοτόπουλο

\[Q_{\text{ΠΡ2}} = m \times C_{p\text{ΑΝΩ}} \times (T_{\text{εισ}} - T_f) \]
\[Q_{\text{ΠΡ2}} = 600 \text{ kg} \times 3,68 \frac{kJ}{kg\text{°C}} \times (3 - (-2,8)) ^{°C} \Rightarrow Q_{\text{ΠΡ2}} = 12,806 \text{ kJ} \]

\[Q_{\text{ΠΡ3}} = m \times Q_{\text{lat}} \]
\[Q_{\text{ΠΡ3}} = 600 \text{ kg} \times 220 \frac{kJ}{kg\text{°C}} \Rightarrow Q_{\text{ΠΡ3}} = 132,000 \text{ kJ} \]

\[Q_{\text{ΠΡ4}} = m \times C_{p\text{ΚΑΤΩ}} \times (T_f - T_3) \]
\[Q_{\text{ΠΡ4}} = 600 \text{ kg} \times 1,72 \frac{kJ}{kg\text{°C}} \times (-2,8 - (-5)) ^{°C} \Rightarrow Q_{\text{ΠΡ4}} = 2,270 \text{ kJ} \]

\[Q_{\text{ΠΡ}} = \frac{Q_{\text{ΠΡ2}} + Q_{\text{ΠΡ3}} + Q_{\text{ΠΡ4}}}{3600+8h} \]
\[Q_{\text{ΠΡ}} = 5,1 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΠΡ}} = 122,4 \text{ kWh/day} \]

Όπου:

\[Q_{\text{ΠΡ}} = \text{ψυκτικό φορτίο προϊόντων (} kWh/day \text{)} \]
\[m = \text{μάζα προϊόντος ημερήσια (kg)} \]
\[T_{\text{εισ}} = \text{θερμοκρασία προϊόντος κατά την προσαγωγή του στον θάλαμο (°C)} \]
\[T_f = \text{θερμοκρασία στερεοποίησης προϊόντος (°C)} \]
\[T_3 = \text{θερμοκρασία αποθήκευσης προϊόντος μικρότερη της στερεοποίησης (°C)} \]
\[C_{p\text{ΑΝΩ}} = \text{ειδική θερμοχωρητικότητα άνω του σημείου στερεοποίησης (kJ/ kg°C)} \]
\[C_{p\text{ΚΑΤΩ}} = \text{ειδική θερμοχωρητικότητα κάτω του σημείου στερεοποίησης (kJ/ kg°C)} \]
\[Q_{\text{lat}} = \text{λανθάνουσα θερμότητα προϊόντος (kJ/kg)} \]

- Παραπάνω υπολογίσαμε το ψυκτικό φορτίο προϊόντων, για χοιρινά και κοτόπουλα, διότι ο θάλαμος θα χρησιμοποιείτε εναλάξ και για τα δύο προϊόντα, οπότε θα πάρουμε το μεγαλύτερο φορτίο από τις δύο περιπτώσεις, για τον υπολογισμό του συνολικού φορτίου.
Για την υπολογισμό των ψυκτικών φορτίων εναλλαγών αέρα, φαίνεται ότι

\[Q_{\text{ΑΕΡ}} = \frac{V (m^3)}{v (m^3/kg)} \cdot z \cdot (H_{\text{εισ}} - H_{\text{in}}) \frac{kJ}{kg} \]

Η εξίσωση γίνεται

\[Q_{\text{ΑΕΡ}} = \frac{91 (m^3)}{0.818 (m^3/kg)} \cdot 0.5 \cdot (31 - 0.2) \frac{kJ}{kg} \]

συνεπώς

\[Q_{\text{ΑΕΡ}} = 1.713,2 \text{ kJ} \]

\[Q_{\text{ΑΕΡ}} = 0.48 \text{ kW} \times 24 \text{ h} \Rightarrow Q_{\text{ΑΕΡ}} = 11,52 \text{ kWh/day} \]

Για την υπολογισμό των ψυκτικών φορτίων από φωτισμό, είναι

\[Q_{\Phi} = A \text{ (m}^2\text{)} \cdot LL \text{ (W/m}^2\text{)} \Rightarrow Q_{\Phi} = 22,75 \text{ (m}^2\text{)} \cdot 10 \text{ (W/m}^2\text{)} \Rightarrow Q_{\Phi} = 227,5 \text{ W} \Rightarrow
\]

\[Q_{\Phi} = 0.228 \text{ kW} \times 1 \text{ h/day} \Rightarrow Q_{\Phi} = 0.228 \text{ kWh/day} \]

Για την υπολογισμό των ψυκτικών φορτίων προσωπικού, οφείλεται

\[Q_{\text{ΑΤΟΜΩΝ}} = N \text{ PEOPLE} \times (272 - 6 \times T_{\text{in}}) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 1 \times (272 - 6 \times (-5)) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 302 \text{ W} \times 1 \text{ h/day} \]

\[Q_{\text{ΑΤΟΜΩΝ}} = 0,302 \text{ kWh/day} \]

Για την υπολογισμό των ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού, είναι

γνωστό ότι ο ηλεκτρολογικός εξοπλισμός ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους, θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονα πρέπει να είναι η λειτουργία τους.
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 7

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΠ} + Q_{ΑΕΡ} + Q_Φ + Q_{ΑΤΟΜΩΝ}) * 1,10 = \]
\[Q_{ΣΥΝ} = (8.25 + 129.8 + 11.52 + 0.228 + 0.302) \text{ kWh/day} * 1,10 = Q_{ΣΥΝ} = 165 \text{ kWh/day} \]

Ο συμπιεστής μας θέλει να δουλέψει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{165 \text{ kWh/day}}{10 \text{ h}} = Q_{ΣΥΝ} = 16.5 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 16.5 \text{ kW} * 1,15 = Q_{ΣΥΝ} = 19 \text{ kW} \]
6.2.8 Θάλαμος 8ος Χώρος κοπής και συσκευασίας σουβλακίων

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60%
Διαστάσεις θαλάμου: 6.5 * 6.5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_in): 12 °C
Σχετική υγρασία εντός θαλάμου: 86%

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποίια:

ΒΟΡΡΑΣ: \[Q_B = U * A * (T_{out} - T_{in}) \] => \[Q_B = 0.1494 \frac{W}{m^2 \cdot °C} * 26 \, m^2 * (-18 - 12) \, °C \] => \[Q_B = -116,53 \, W \]

ΝΟΤΟΣ: \[Q_N = U * A * (T_{out} - T_{in}) \] => \[Q_N = 0.2219 \frac{W}{m^2 \cdot °C} * 26 \, m^2 * (0 - 12) \, °C \] => \[Q_N = -69,23 \, W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \] => \[Q_A = 0.2219 \frac{W}{m^2 \cdot °C} * 26 \, m^2 * (12 - 12) \, °C \] => \[Q_A = 0 \, W \]

ΔΥΣΗ: \[Q_Δ = U * A * (T_{out} - T_{in}) \] => \[Q_Δ = 0.2219 \frac{W}{m^2 \cdot °C} * 26 \, m^2 * (12 - 12) \, °C \] => \[Q_Δ = 0 \, W \]

ΟΡΟΦΗ: \[Q_Ο = U * A * (T_{out} - T_{in}) \] => \[Q_Ο = 0.2219 \frac{W}{m^2 \cdot °C} * 42,25 \, m^2 * (16 - 12) \, °C \] => \[Q_Ο = 215,6 \, W \]

ΔΑΠΕΔΟ: \[Q_Π = U * A * (T_{out} - T_{in}) \] => \[Q_Π = 0,2334 \frac{W}{m^2 \cdot °C} * 42,25 \, m^2 * (16 - 12) \, °C \] => \[Q_Π = 39,44 \, W \]

\[Q_T = Q_B + Q_N + Q_A + Q_Ο + Q_Π \] => \[Q_T = 69,28 \, W / 1000 \] => \[Q_T = 0,069 \, kW \] * 24 h =>

\[Q_T = 1,66 \, kW \cdot h / day \]
Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί δεν έχουμε αποθήκευση στο συγκεκριμένο χώρο αλλά επεξεργασία

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

Φορτία από αερισμό δεν έχουμε γιατί στον μέσα θάλαμο και στον διάδρομο όπου υπάρχει η πόρτα έχουμε ιδιες θερμοκρασίες

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[
Q_\Phi = A \, (m^2) \times LL \, (W/m^2) \Rightarrow Q_\Phi = 42,25(m^2) \times 10 \, (W/m^2) \Rightarrow Q_\Phi = 422,5 \, W \\
Q_\Phi = 0,423 \, kW \times 8 \, h/day \Rightarrow Q_\Phi = 3,38 \, kWh/day
\]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[
Q_{\text{ΑΤΟΜΩΝ}} = N \times \text{PEOPLE} \times (272 - 6 \times T_{\text{in}}) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 6 \times (272 - 6 \times 12) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 1200 \, W \times 8 \, h/day \\
\Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 9,60 \, kWh/day
\]

Υπολογισμός ψυκτικών φορτίων από κινητήρες

\[
Q_k = N \times \text{Watt} \times \text{Hours} \\
\text{Σουβλακομηγανή} : Q_{\text{κφ}} = 1 \times 4.80 \, kW \times 4 \, h/day \Rightarrow Q_{\text{κφ}} = 17,92 \, kWh/day \\
\text{Μηχάνημα συσκευασίας vacuum} : Q_{\text{κβ}} = 1 \times 1.5 \, kW \times 4 \, h/day \Rightarrow Q_{\text{κβ}} = 6 \, kWh/day \\
Q_k = Q_{\text{κφ}} + Q_{\text{κβ}} \Rightarrow Q_k = 17,92 + 6 \Rightarrow Q_k = 23.92 \, kWh/day
\]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπου ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους, θα τα λαμβάνουμε από 5 – 15% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 8

\[Q_{ΣΥΝ} = (Q_T + Q_{ΙΠ} + Q_{ΑΕΡ} + Q_Φ + Q_{ΑΤΟΜΩΝ} + Q_κ) \times 1,10 \Rightarrow \]

\[Q_{ΣΥΝ} = (1,66 + 0 + 0 + 3,38 + 9,60 + 23,92) \text{ kWh/day} \times 1,10 \Rightarrow Q_{ΣΥΝ} = 42,4 \text{ kWh/day} \]

Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε :

\[Q_{ΣΥΝ} = \frac{42,4 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{ΣΥΝ} = 4,24 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 4,24 \text{ kW} \times 1,15 \Rightarrow Q_{ΣΥΝ} = 4,9 \text{ Kw} \]
6.2.9 Θάλαμος 9ος Τούνελ (Βαθειά Κατάψυξη)

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 3 * 6,34 * 3,6 m³
Εσωτερική θερμοκρασία θαλάμου (T_{in}): -35 °C
Εσωτερική θερμοκρασία προϊόντων (T_{pr}): -18 °C
Σχετική υγρασία εντός θαλάμου: 88 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποίια:

BOΡΡΑΣ: Q_B = U * A * (T_{out} - T_{in}) => Q_B = 0.1249 W/m²·°C * 22,82 m² * (-5 - (-35)) °C => Q_B = 85,5 W

ΝΟΤΟΣ: Q_N = U * A * (T_{out} - T_{in}) => Q_N = 0.1249 W/m²·°C * 22,82 m² * (-18 - (-35)) °C => Q_N = 48,45 W

ΑΝΑΤΟΛΗ: Q_A = U * A * (T_{out} - T_{in}) => Q_A = 0.1249 W/m²·°C * 10,8 m² * (12 - (-35)) °C => Q_A = 63,4 W

ΔΥΣΗ: Q_Δ = U * A * (T_{out} - T_{in}) => Q_Δ = 0.1249 W/m²·°C * 10,8 m² * (12 - (-35)) °C => Q_Δ = 63,4 W

ΟΡΟΦΗ: Q_Ο = U * A * (T_{out} - T_{in}) => Q_Ο = 0.1249 W/m²·°C * 19 m² * (35 - (-35)) °C => Q_Ο = 166,1 W

ΔΑΠΕΔΟ: Q_Π = U * A * (T_{out} - T_{in}) => Q_Π = 0.1750 W/m²·°C * 19 m² * (16 - (-35)) °C => Q_Π = 169,58 W

- Q_T = Q_B + Q_N + Q_A + Q_Δ + Q_Ο + Q_Π => Q_T = 596,43 W / 1000 => Q_T = 0,596 kW * 24 h =>

Q_T = 14,3 kW·h / day
Υπολογισμός ψυκτικών φορτίων προϊόντων

Για τον υπολογισμό των προϊόντων στο συγκεκριμένο θάλαμο πρέπει αρχικά να υπολογίσω τον χρόνο ψύξης στο κέντρο του προϊόντος, οπότε έχουμε τον παρακάτω τύπο:

\[
t = \frac{\rho \cdot \lambda}{T_f - T_m} \cdot \left(\frac{P \cdot a}{h} + \frac{R \cdot a^2}{k} \right)
\]

Χορινό

\[
t = \frac{1000 \cdot 243}{-2,2 - (-35)} \cdot \left(\frac{\left(\frac{1}{4}\right) \cdot 0,25}{45} + \frac{\left(\frac{1}{16}\right) \cdot (0,25)^2}{1,425} \right)
\]

\[
t = 243,000 \cdot \left(\frac{0,0625}{45} + \frac{0,003906}{1,425}\right)
\]

\[
t = 7,408,53 \cdot (0,001389 + 0,002741)
\]

\[
t = 7,408,53 \cdot 0,004130
\]

\[
t = 30,656,5 \frac{kJ}{W}
\]

\[
t = 30,656,5 \frac{kJ}{W} = 30,656,5 \text{ sec}
\]

\[
Q_{\Pi 2} = m \cdot C_{pA} \cdot (T_{f\alpha} - T_f) \Rightarrow Q_{\Pi 2} = 400 \text{ kg} \cdot 2,47 \frac{kJ}{kg\cdot^\circ C} \cdot (3 - (-2,2)) \text{ } ^\circ C \Rightarrow Q_{\Pi 2} = 5,137,6 \text{ kJ}
\]

\[
Q_{\Pi 3} = m \cdot Q_{lat} \Rightarrow Q_{\Pi 3} = 400 \text{ kg} \cdot 243 \frac{kJ}{kg} \Rightarrow Q_{\Pi 3} = 97,200 \text{ kJ}
\]

\[
Q_{\Pi 4} = m \cdot C_{pK} \cdot (T_f - T_3) \Rightarrow Q_{\Pi 4} = 400 \text{ kg} \cdot 1,38 \frac{kJ}{kg\cdot^\circ C} \cdot (-2,2 - (-5)) \text{ } ^\circ C \Rightarrow Q_{\Pi 4} = 1,545,6 \text{ kJ}
\]

\[
Q_{\Pi} = \frac{Q_{\Pi 2} + Q_{\Pi 3} + Q_{\Pi 4}}{3065.65 \text{ sec}} \Rightarrow Q_{\Pi} = \frac{103883.2 \text{ kJ}}{3065.65 \text{ sec}} \Rightarrow Q_{\Pi} = 3.39 \text{ kW} \cdot 24\text{ h} \Rightarrow Q_{\Pi} = 81.36 \text{ } kW\cdot\text{h/day}
\]
Κοτόπουλο

\[
t = \rho \frac{\lambda}{T_f - T_m} \left(\frac{P \alpha}{h} + \frac{R \alpha^2}{k} \right) \]

\[
t = \frac{997 \times 220}{-2.8 - (-35)} \left(\frac{\left(\frac{1}{4} \right) \times 0.25}{43} + \frac{\left(\frac{1}{16} \right) \times (0.25)^2}{1.235} \right) \]

\[
t = \frac{219.340}{32.2} \times \frac{0.0625}{45} + \frac{0.003906}{1.425} \]

\[
t = 6.811.8 \times (0.001453 + 0.002741) \]

\[
t = 6.811.8 \times 0.004194 \]

\[
t = \frac{28.573.6}{J/W} \]

\[
t = 28.573.6 \text{ sec} \]

\[Q_{ΠΡ2} = m \times C_{pΑΝΩ} \times (T_{Εισ} - T_f) \Rightarrow Q_{ΠΡ2} = 400 \text{ kg} \times 3.68 \frac{kJ}{kg°C} \times (3 - (-2.8)) \text{ °C} = 8.537.6 \text{ kJ} \]

\[Q_{ΠΡ3} = m \times Q_{lat} \Rightarrow Q_{ΠΡ3} = 400 \text{ kg} \times 220 \frac{kJ}{kg} = 88.000 \text{ kJ} \]

\[Q_{ΠΡ4} = m \times C_{pΚΑΤΩ} \times (T_f - T_3) \Rightarrow Q_{ΠΡ4} = 400 \text{ kg} \times 1.72 \frac{kJ}{kg°C} \times (-2.8 - (-35)) \text{ °C} = 22.153.6 \text{ kJ} \]

\[Q_{ΠΡ} = \frac{Q_{ΠΡ2} + Q_{ΠΡ3} + Q_{ΠΡ4}}{3600 \times 8h} \Rightarrow Q_{ΠΡ} = \frac{118691.2 \text{ kJ}}{28573.6 \text{ sec}} \Rightarrow Q_{ΠΡ} = 4.15 \text{ kW} \times 24 \text{ h} \Rightarrow \]

\[Q_{ΠΡ} = 99.6 \text{ kWh/day} \]

Όπου:

\[
Q_{ΠΡ} = \text{ψυκτικό φορτίο προϊόντων (kWh/day)} \]

\[
m = \text{μάζα προϊόντος ημερήσια (kg)} \]

\[
T_{Εισ} = \text{θερμοκρασία προϊόντος κατά την προσαγωγή του στον θάλαμο (°C)} \]

\[
T_f = \text{θερμοκρασία στερεοποίησης προϊόντος (°C)} \]

\[
T_3 = \text{θερμοκρασία αποθήκευσης προϊόντος μικρότερη της στερεοποίησης (°C)} \]

\[
C_{pΑΝΩ} = \text{ειδική θερμοχωρητικότητα άνω του σημείου στερεοποίησης (kJ/kg°C)} \]

\[
C_{pΚΑΤΩ} = \text{ειδική θερμοχωρητικότητα κάτω του σημείου στερεοποίησης (kJ/kg°C)} \]

\[
Q_{lat} = \text{λανθάνουσα θερμότητα προϊόντος (kJ/kg)} \]
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Παραπάνω υπολογίσαμε το ψυκτικό φορτίο προϊόντων, για χοίρινα και κοτόπουλα διότι ο θάλαμος θα χρησιμοποιείτε εναλλάξ και για τα δύο προϊόντα, οπότε θα πάρουμε το μεγαλύτερο φορτίο από τις δύο περιπτώσεις, για τον υπολογισμό του συνολικού φορτίου

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{AEP}} = \frac{V (m^3)}{v (m^3/kg)} \cdot z \cdot (H_{\text{in}} - H_{\text{out}}) \frac{kJ}{kg} \]

\[= Q_{\text{AEP}} = 922.6 \, \text{kJ} \quad \Rightarrow \quad Q_{\text{AEP}} = \frac{922.6 \, \text{kJ}}{3600 \, \text{sec}} \quad \Rightarrow \quad Q_{\text{AEP}} = 0.256 \, \text{kW} \times 24 \, \text{h} \quad \Rightarrow \quad Q_{\text{AEP}} = 6.15 \, \text{kWh/day} \]

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q_{\Phi} = A (m^2) \cdot LL (W/m^2) \quad \Rightarrow \quad Q_{\Phi} = 19.02 (m^2) \cdot 10 (W/m^2) \quad \Rightarrow \quad Q_{\Phi} = 190.2 \, \text{W} \]

\[= \Rightarrow \quad Q_{\Phi} = 0.190 \, \text{kW} \times 0.5 \, \text{h/day} \Rightarrow \quad Q_{\Phi} = 0.095 \, \text{kWh/day} \]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = N \cdot \text{PEOPLE} \cdot (272 - 6 \cdot T_{\text{in}}) \Rightarrow \quad Q_{\text{ΑΤΟΜΩΝ}} = 2 \cdot (272 - 6 \cdot 0) \]

\[= \Rightarrow \quad Q_{\text{ΑΤΟΜΩΝ}} = 544 \, \text{W} \times 0.5 \, \text{h/day} \Rightarrow \quad Q_{\text{ΑΤΟΜΩΝ}} = 0.272 \, \text{kWh/day} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός οπως ανεμιστήρες στοιχείων, αντιστάσεις στοιχείων επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 9

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΠ} + Q_{ΑΕΡ} + Q_{Φ} + Q_{ΑΤΟΜΩΝ}) \times 1,10 = Q_{ΣΥΝ} = 132,46 \text{ kWh/day} \]

*Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε :

\[Q_{ΣΥΝ} = \frac{132,46 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{ΣΥΝ} = 13,25 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 13,25 \text{ kW} \times 1,15 = Q_{ΣΥΝ} = 15,23 \text{ kW} \]
6.2.10 Θάλαμος 10ος Κατάψυξη έτοιμων

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60
Διαστάσεις θαλάμου: 5 * 6,4 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_in): -18 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

ΒΟΡΡΑΣ:

Q_B = U * A * (T_out – T_in) => Q_B = 0,1494 \frac{W}{m^2 °C} * 25,6 m^2 * (35 - (-18)) °C => Q_B = - 65 W

ΝΟΤΟΣ:

Q_N = U * A * (T_out – T_in) => Q_N = 0,1494 \frac{W}{m^2 °C} * 25,6 m^2 * (12 - (-18)) °C => Q_N = 114,7 W

ΑΝΑΤΟΛΗ:

Q_A = U * A * (T_out – T_in) => Q_A = 0,1494 \frac{W}{m^2 °C} * 20 m^2 * (12 - (-18)) °C => Q_A = 89,64 W

ΔΥΣΗ:

Q_D = U * A * (T_out – T_in) => Q_D = 0,1494 \frac{W}{m^2 °C} * 20 m^2 * (12 - (-18)) °C => Q_D = 89,64 W

ΟΡΟΦΗ:

Q_O = U * A * (T_out – T_in) => Q_O = 0,1494 \frac{W}{m^2 °C} * 32 m^2 * (35 - (-18)) °C => Q_O = 253,4 W

ΔΑΠΕΔΟ:

Q_P = U * A * (T_out – T_in) => Q_P = 0,2334 \frac{W}{m^2 °C} * 32 m^2 * (16 - (-18)) °C => Q_P = 254 W

* Q_T = Q_B + Q_N + Q_A + Q_O + Q_P => Q_T = 736,4 W / 1000 => Q_T = 0,737 kW * 24 h =>

Q_T = 17,69 kW/h/day
Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί έρχονται ήδη παγωμένα για αποθήκευση

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[
Q_{\text{ΑΕΡ}} = \frac{V (m^3)}{v (m^3/kg)} \cdot z \cdot (H_{\text{ΕΙ}} - H_{\text{ΙΝ}}) \frac{kJ}{kg} = \frac{128 (m^3)}{0.818 (m^3/kg)} \cdot 0.5 \cdot (31 - (-16.4)) \frac{kJ}{kg}
\]

\[
=> Q_{\text{ΑΕΡ}} = 7.417,1 \text{ kJ} = Q_{\text{ΑΕΡ}} = 3\frac{708.5 \text{ kJ}}{3600 \text{ sec}} = Q_{\text{ΑΕΡ}} = 2.06 \text{ kW} * 24 \text{ h} = Q_{\text{ΑΕΡ}} = 49.44 \text{ kWh/day}
\]

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[
Q_\Phi = A (m^2) * LL (W/m^2) = Q_\Phi = 32 (m^2) * 10 (W/m^2) = Q_\Phi = 320 \text{ W} = Q_\Phi = 0.320 \text{ kW} * 1 \text{ h/day}
\]

\[
=> Q_\Phi = 0.320 \text{ kWh/day}
\]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[
Q_{\text{ΑΤΟΜΩΝ}} = \text{NOPEOPLE} * (272 - 6 * T_{\text{ΙΝ}}) = Q_{\text{ΑΤΟΜΩΝ}} = 1 * (272 - 6 * (-18)) = Q_{\text{ΑΤΟΜΩΝ}} = 380 \text{ W} * 1 \text{ h/ day}
\]

\[
=> Q_{\text{ΑΤΟΜΩΝ}} = 0.380 \text{ kWh/day}
\]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 10

\[
Q_{ΣΥΝ} = (Q_T + Q_{ΠΠ} + Q_{ΑΕΡ} + Q_Φ + Q_{ΑΤΩΜΩΝ}) \times 1,10 \Rightarrow \\
Q_{ΣΥΝ} = (17,7 + 0 + 49,44 + 0,320 + 0,380) \text{ kWh/\text{day}} \times 1,10 \Rightarrow Q_{ΣΥΝ} = 74,62 \text{ kWh/\text{day}}
\]

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε:

\[
Q_{ΣΥΝ} = \frac{74,62 \text{ kWh/\text{day}}}{10 \text{ h}} \Rightarrow Q_{ΣYN} = 7,46 \text{ kW}
\]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[
Q_{ΣΥΝ} = 7,46 \text{ kW} \times 1,15 \Rightarrow Q_{ΣΥΝ} = 8,6 \text{ kW}
\]
6.2.11 Θάλαμος 11ω Συντήρηση έτοιμων συσκευασμένων χοιρινών

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 3,7 * 6,5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (Τιν) : 0 °C
Σχετική υγρασία εντός θαλάμου : 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

ΒΟΡΡΑΣ:

\[Q_B = U * A * (T_{out} - T_{in}) \]
\[Q_B = 0.2219 \frac{W}{m^2\cdot ^\circ C} * 26 m^2 * (12 - 0) °C \]
\[Q_B = 69,23 W \]

ΝΟΤΟΣ:

\[Q_N = U * A * (T_{out} - T_{in}) \]
\[Q_N = 0.2219 \frac{W}{m^2\cdot ^\circ C} * 26 m^2 * (0 - 0) °C \]
\[Q_N = 0 W \]

ΑΝΑΤΟΛΗ:

\[Q_A = U * A * (T_{out} - T_{in}) \]
\[Q_A = 0.2219 \frac{W}{m^2\cdot ^\circ C} * 14,8 m^2 * (12 - 0) °C \]
\[Q_A = 34,41 W \]

ΔΥΣΗ:

\[Q_\Delta = U * A * (T_{out} - T_{in}) \]
\[Q_\Delta = 0.2219 \frac{W}{m^2\cdot ^\circ C} * 14,8 m^2 * (12 - 0) °C \]
\[Q_\Delta = 34,41 W \]

ΟΡΟΦΗ:

\[Q_o = U * A * (T_{out} - T_{in}) \]
\[Q_o = 0.2219 \frac{W}{m^2\cdot ^\circ C} * 24,05 m^2 * (35 - 0) °C \]
\[Q_o = 186,8 W \]

ΔΑΠΕΔΟ:

\[Q_\Pi = U * A * (T_{out} - T_{in}) \]
\[Q_\Pi = 0.2334 \frac{W}{m^2\cdot ^\circ C} * 24,05m^2 * (16 - 0) °C \]
\[Q_\Pi = 89,81 W \]

\[Q_T = Q_B + Q_N + Q_A+ Q_\Delta + Q_o + Q_\Pi \Rightarrow Q_T = 414,66 W / 1000 \Rightarrow Q_T = 0,415 kW * 24 h \Rightarrow \]

\[Q_T = 9,95 kW/h\text _{/day} \]
Υπολογισμός ψυκτικών φορτίων προϊόντων

Χοιρινό

\[Q_{\text{ΠΡ}} = m \cdot C_{\text{p}} \cdot (T_{\text{εισ}} - T_{2}) \]

\(m = 600 \text{ kg} \)

\(C_{\text{p}} = 2,47 \frac{kJ}{kg \cdot ^\circ C} \)

\((3 - 0) ^\circ C = 3^\circ C \)

\[Q_{\text{ΠΡ}} = 4,446 \text{ kJ} \]

\[Q_{\text{ΠΡ}} = 0,412 \text{ kW} \times 24 \text{ h} = 9,89 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{ΑΕΡ}} = \frac{V}{(m^3)} \cdot \frac{\nu}{(m^3/kg)} \cdot z \cdot (H_{\text{εισ}} - H_{\text{in}}) \frac{kJ}{kg} \]

\[Q_{\text{ΑΕΡ}} = \frac{2704,9 kJ}{3600 \text{ sec}} \]

\(\nu = 0,818 \frac{(m^3)}{(kg)} \)

\((31 - 8) \)

\[Q_{\text{ΑΕΡ}} = 2,704,9 \text{ kJ} = 2,704,9 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q_{\Phi} = A \frac{(m^2)}{(W/m^2)} \]

\(A = 24,05 \text{ (m^2)} \times 10 \text{ (W/m^2)} \)

\(Q_{\Phi} = 240,5 \text{ W} \Rightarrow Q_{\Phi} = 0,241 \text{ kW} \times 1 \text{ h/day} \)

\[Q_{\Phi} = 0,241 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ATOMΕΝ}} = N_{\text{PEOPLE}} \times (272 - 6 \times T_{\text{in}}) \]

\(N_{\text{PEOPLE}} = 2 \times (272 - 6 \times 0) \)

\(Q_{\text{ATOMΕΝ}} = 544 \text{ W} \times 1 \text{ h/day} \)

\[Q_{\text{ATOMΕΝ}} = 0,544 \text{ kWh/day} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 11

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΠ} + Q_{ΑΕΦ} + Q_Φ + Q_{ΑΤΟΜΩΝ}) \times 1,10 = \]
\[Q_{ΣΥΝ} = (9,95 + 9,89 + 18 + 0,241 + 0,544) \text{ kWh/day} \times 1,10 = Q_{ΣΥΝ} = 42,5 \text{ kWh/day} \]

To 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{42,5 \text{ kWh/day}}{10 \text{ h}} = Q_{ΣΥΝ} = 4,25 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 4,25 \text{ kW} \times 1,15 = Q_{ΣΥΝ} = 4,9 \text{ kW} \]
6.2.12 Θάλαμος 12ου Συντήρηση έτοιμων συσκευασμένων κοτόπουλων

Συνθήκες περιβάλλοντος: θερμοκρασία ζηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 3,7 * 6,5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_{in}): 0 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός ψυκτικών φορτίων χώρου

Τοιχοποιία:

ΒΟΡΡΑΣ:

Q_B = U * A * (T_{out} – T_{in}) => Q_B = 0.2219 W/m²°C * 26 m² * (0 – 0) °C => Q_B = 0 W

ΝΟΤΟΣ:

Q_N = U * A * (T_{out} – T_{in}) => Q_N = 0.2219 W/m²°C * 26 m² * (35 – 0) °C => Q_N = 201,93 W

ΑΝΑΤΟΛΗ:

Q_A = U * A * (T_{out} – T_{in}) => Q_A = 0.2219 W/m²°C * 14,8 m² * (12 – 0) °C => Q_A = 34,41 W

ΔΥΣΗ:

Q_Δ = U * A * (T_{out} – T_{in}) => Q_Δ = 0.2219 W/m²°C * 14,8 m² * (12 – 0) °C => Q_Δ = 34,41 W

ΟΡΟΦΗ:

Q_Ο = U * A * (T_{out} – T_{in}) => Q_Ο = 0.2219 W/m²°C * 24,05 m² * (35 – 0) °C => Q_Ο = 186,8 W

ΔΑΠΕΔΟ:

Q_Π = U * A * (T_{out} – T_{in}) => Q_Π = 0.2334 W/m²°C * 24,05 m² * (16 – 0) °C => Q_Π = 89,81 W

Q_T = Q_B + Q_N + Q_A + Q_Δ + Q_Ο + Q_Π => Q_T = 547,36 W / 1000 => Q_T = 0,547 kW * 24 h =>

Q_T = 13,13 kWh/day
Υπολογισμός ψυκτικών φορτίων προϊόντων

\[Q_{\text{ΠΡ1}} = m \ast C_p \ast (T_{\text{εισ}} - T_2) \Rightarrow Q_{\text{ΠΡ1}} = 600 \, \text{kg} \ast 3,68 \ast \frac{kJ}{kg \ast ^\circ C} \ast (3 - 0) \, ^\circ C \Rightarrow Q_{\text{ΠΡ1}} = 6.624 \, kJ \]

\[Q_{\text{ΠΡ}} = \frac{6624 \, kJ}{3600 \ast 3 \, \text{h}} \Rightarrow Q_{\text{ΠΡ}} = 0,613 \, kW \ast 24 \, h \Rightarrow Q_{\text{ΠΡ}} = 14,71 \, kWh/\text{day} \]

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{ΑΕΡ}} = \frac{V \, (m^3)}{v \, (m^3/kg)} \ast z \ast (h_{\text{εισ}} - h_{\text{εισ}}) \ast \frac{kJ}{kg} \Rightarrow Q_{\text{ΑΕΡ}} = \frac{96,2 \, (m^3)}{0,818 \, (m^3/kg)} \ast 1 \ast (31 - 8) \ast \frac{kJ}{kg} \]

\[= Q_{\text{ΑΕΡ}} = 2.704,9 \, kJ \Rightarrow Q_{\text{ΑΕΡ}} = \frac{2704,9 \, kJ}{3600 \, \text{sec}} \Rightarrow Q_{\text{ΑΕΡ}} = 0,75 \, kW \ast 24 \, h \Rightarrow Q_{\text{ΑΕΡ}} = 18 \, kWh/\text{day} \]

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q_{\Phi} = A \, (m^2) \ast LL \, (W/m^2) \Rightarrow Q_{\Phi} = 24,05 \, (m^2) \ast 10 \, (W/m^2) \Rightarrow Q_{\Phi} = 240,5 \, W \Rightarrow Q_{\Phi} = 0,241 \, kW \ast 1 \, \text{h/day} \]

\[= Q_{\Phi} = 0,241 \, kWh/\text{day} \]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = NO\text{PEOPLE} \ast (272 - 6 \ast T_{\text{in}}) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 2 \ast (272 - 6 \ast 0) \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 544 \, W \ast 1 \, \text{h/day} \]

\[= Q_{\text{ΑΤΟΜΩΝ}} = 0,544 \, kWh/\text{day} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 - 15% του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΘΑΛΑΜΟΥ 12

\[Q_{ΣΥΝ} = (Q_T + Q_{ΠΡ} + Q_{ΑΕΡ} + Q_{Φ} + Q_{ΑΤΟΜΩΝ}) \times 1.10 \]

\[Q_{ΣΥΝ} = (13.13 + 14.71 + 18 + 0.241 + 0.544) \text{ kWh/day} \times 1.10 \Rightarrow Q_{ΣΥΝ} = 51.28 \text{ kWh/day} \]

* Το 1,10 είναι ο συντελεστής για τον ηλεκτρολογικό εξοπλισμό

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε:

\[Q_{ΣΥΝ} = \frac{51.28 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{ΣΥΝ} = 5.13 \text{ kW} \]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[Q_{ΣΥΝ} = 5.13 \text{ kW} \times 1.15 \Rightarrow Q_{ΣΥΝ} = 5.9 \text{ kW} \]
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

6.2.13 Θάλαμος 13ος Διάδρομος

Συνθήκες περιβάλλοντος: θερμοκρασία ξηρής σφαίρας 35 °C, σχετική υγρασία 60 %
Διαστάσεις θαλάμου: 3,7 * 6,5 * 4 m³
Εσωτερική θερμοκρασία θαλάμου (T_{in}): 12 °C
Σχετική υγρασία εντός θαλάμου: 86 %

Υπολογισμός υπνοικικών θερμικών φορτίων χώρου

Τοιχοποιία: \[Q_T = U * A * \Delta T \]

ΒΟΡΡΑΣ: \[Q_B = U * A * (T_{out} - T_{in}) \Rightarrow Q_B = 0.2219 \frac{W}{m^2\circ C} * 44 m^2 * (0 - 12) °C \Rightarrow Q_B = -117.2 W \]

ΒΟΡΡΑΣ: \[Q_B = U * A * (T_{out} - T_{in}) \Rightarrow Q_B = 0.2219 \frac{W}{m^2\circ C} * 20 m^2 * (12 - 12) °C \Rightarrow Q_B = 0 W \]

ΒΟΡΡΑΣ: \[Q_B = U * A * (T_{out} - T_{in}) \Rightarrow Q_B = 0.2219 \frac{W}{m^2\circ C} * 14 m^2 * (35 - 12) °C \Rightarrow Q_B = 71.45 W \]

ΝΟΤΟΣ: \[Q_N = U * A * (T_{out} - T_{in}) \Rightarrow Q_N = 0.2219 \frac{W}{m^2\circ C} * 26 m^2 * (-5 - 12) °C \Rightarrow Q_N = -98.1 W \]

ΝΟΤΟΣ: \[Q_N = U * A * (T_{out} - T_{in}) \Rightarrow Q_N = 0.2219 \frac{W}{m^2\circ C} * 20 m^2 * (0 - 12) °C \Rightarrow Q_N = -53.3 W \]

ΝΟΤΟΣ: \[Q_N = U * A * (T_{out} - T_{in}) \Rightarrow Q_N = 0.2219 \frac{W}{m^2\circ C} * 28 m^2 * (35 - 12) °C \Rightarrow Q_N = 143 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.1249 \frac{W}{m^2\circ C} * 10,8 m^2 * (-35 - 12) °C \Rightarrow Q_A = -63.4 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.1494 \frac{W}{m^2\circ C} * 20 m^2 * (-18 - 12) °C \Rightarrow Q_A = -89.64 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.2219 \frac{W}{m^2\circ C} * 14 m^2 * (-5 - 12) °C \Rightarrow Q_A = -52.8 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.2219 \frac{W}{m^2\circ C} * 17.4 m^2 * (0 - 12) °C \Rightarrow Q_A = -46.33 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.2219 \frac{W}{m^2\circ C} * 27.4 m^2 * (12 - 12) °C \Rightarrow Q_A = 0 W \]

ΑΝΑΤΟΛΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.2219 \frac{W}{m^2\circ C} * 14 m^2 * (35 - 12) °C \Rightarrow Q_A = 71.45 W \]

ΔΥΣΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.1249 \frac{W}{m^2\circ C} * 10,8 m^2 * (-35 - 12) °C \Rightarrow Q_A = -63.4 W \]

ΔΥΣΗ: \[Q_A = U * A * (T_{out} - T_{in}) \Rightarrow Q_A = 0.1494 \frac{W}{m^2\circ C} * 20 m^2 * (-18 - 12) °C \Rightarrow Q_A = -89.64 W \]
ΔΥΣΗ: \[Q_\Delta = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Delta = 0.2219 \frac{W}{m^2 \cdot ^\circ C} \cdot 14 \text{ m}^2 \cdot (-5 - 12) ^\circ C \Rightarrow Q_\Delta = -52.8 \text{ W} \]

ΔΥΣΗ: \[Q_\Delta = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Delta = 0.2219 \frac{W}{m^2 \cdot ^\circ C} \cdot 49.6 \text{ m}^2 \cdot (0 - 12) ^\circ C \Rightarrow Q_\Delta = -132.1 \text{ W} \]

ΔΥΣΗ: \[Q_\Delta = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Delta = 0.2219 \frac{W}{m^2 \cdot ^\circ C} \cdot 26 \text{ m}^2 \cdot (12 - 12) ^\circ C \Rightarrow Q_\Delta = 0 \text{ W} \]

ΔΥΣΗ: \[Q_\Delta = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Delta = 0.2219 \frac{W}{m^2 \cdot ^\circ C} \cdot 118.8 \text{ m}^2 \cdot (35 - 12) ^\circ C \Rightarrow Q_\Delta = 606 \text{ W} \]

ΟΡΟΦΗ: \[Q_\Omega = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Omega = 0.2219 \frac{W}{m^2 \cdot ^\circ C} \cdot 270.6 \text{ m}^2 \cdot (35 - 12) ^\circ C \Rightarrow Q_\Omega = 1.381 \text{ W} \]

ΔΑΠΕΔΟ: \[Q_\Pi = U \cdot A \cdot (T_{\text{out}} - T_{\text{in}}) \] \[\Rightarrow Q_\Pi = 0.2334 \frac{W}{m^2 \cdot ^\circ C} \cdot 270.6 \text{ m}^2 \cdot (16 - 12) ^\circ C \Rightarrow Q_\Pi = 252.6 \text{ W} \]

- \[QT = Q_B + Q_\Lambda + Q_\Delta + Q_\Omega + Q_\Pi \] \[\Rightarrow QT = 1.667 \text{ W} / 1000 \Rightarrow QT = 1.67 \text{ kW} \cdot 24 \text{ h} => \]

\[QT = 40 \text{ kWh/\textit{day}} \]
Υπολογισμός ψυκτικών φορτίων προϊόντων

Φορτίο από προϊόντα δεν υπάρχει, γιατί δεν έχουμε αποθήκευση στο συγκεκριμένο χώρο.

Υπολογισμός ψυκτικών φορτίων εναλλαγών αέρα

\[Q_{\text{ΑΕΡ}} = \frac{V (m^3)}{v (m^3/kg)} \times z \times (H_{\text{εισ}} - H_{\text{ιν}}) \frac{kJ}{kg} \]

\[Q_{\text{ΑΕΡ}} = \frac{1.082 (m^3)}{0.903 (m^3/kg)} \times 0.167 \times (90.1 - 31) \frac{kJ}{kg} \]

\[Q_{\text{ΑΕΡ}} = 11.826 \text{ kJ} \]

\[Q_{\text{ΑΕΡ}} = 11826 \text{ kJ} \]

\[\frac{3600 \text{ sec}}{} \Rightarrow Q_{\text{ΑΕΡ}} = \frac{78.72 \text{ kJ}}{\text{day}} \]

Υπολογισμός ψυκτικών φορτίων από φωτισμό

\[Q_{\Phi} = A (m^2) \times LL (W/m^2) \]

\[Q_{\Phi} = 270.6 (m^2) \times 10 (W/m^2) \Rightarrow Q_{\Phi} = 2706 \text{ W} \]

\[Q_{\Phi} = 2.7 \text{ kW} \times 8/\text{day} \Rightarrow Q_{\Phi} = 21.6 \text{ kWh/\text{day}} \]

Υπολογισμός ψυκτικών φορτίων προσωπικού

\[Q_{\text{ΑΤΟΜΩΝ}} = N\text{PEOPLE} \times (272 - 6 \times T_{\text{in}}) \]

\[Q_{\text{ΑΤΟΜΩΝ}} = 4 \times (272 - 6 \times 12) \]

\[Q_{\text{ΑΤΟΜΩΝ}} = 800 \text{ W} \times 8 \text{ h/day} \Rightarrow Q_{\text{ΑΤΟΜΩΝ}} = 6.4 \text{ kWh/\text{day}} \]

Υπολογισμός ψυκτικών φορτίων ηλεκτρολογικού εξοπλισμού

Ο ηλεκτρολογικός εξοπλισμός όπως ανεμιστήρες στοιχείου, αντιστάσεις στοιχείου επειδή δεν ξέρουμε τον τύπο του στοιχείου για να γνωρίζουμε την ισχύ τους θα τα λαμβάνουμε από 5 – 15 % του συνολικού φορτίου του θαλάμου ανάλογα το πόσο έντονη πρέπει να είναι η λειτουργία τους.
ΣΥΝΟΛΙΚΟ ΦΟΡΤΙΟ ΔΙΑΔΡΟΜΟΥ

\[
Q_{\text{ΣΥΝ}} = (Q_T + Q_{\text{ΠΡ}} + Q_{\text{ΑΕΡ}} + Q_{\text{Φ}} + Q_{\text{ΑΤΟΜΩΝ}}) \times 1.10
\]

\[
Q_{\text{ΣΥΝ}} = (40 + 0 + 78.72 + 21.6 + 6.4) \text{ kWh/day} \times 1.10 \Rightarrow Q_{\text{ΣΥΝ}} = 161.4 \text{ kWh/day}
\]

Ο συμπιεστής μας θέλουμε να δουλεύει 10 ώρες την ημέρα, οπότε :

\[
Q_{\text{ΣΥΝ}} = \frac{161.4 \text{ kWh/day}}{10 \text{ h}} \Rightarrow Q_{\text{ΣΥΝ}} = 16.14 \text{ kW}
\]

Τέλος πολλαπλασιάζουμε με ένα συντελεστή ασφαλείας 1,15 και παίρνουμε την τελική ισχύ:

\[
Q_{\text{ΣΥΝ}} = 16.14 \text{ kW} \times 1.15 \Rightarrow Q_{\text{ΣΥΝ}} = 18.6 \text{ kW}
\]

ΟΙ ΘΑΛΑΜΟΙ 5, 6, 7, 8, 9, 10 ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΕΝΝΑΛΑΞ, ΤΗΝ ΜΙΑ ΜΕΡΑ ΧΟΙΡΙΝΑ, ΤΗΝ ΕΠΟΜΕΝΗ ΚΟΤΟΠΟΥΛΑ ΚΑΙ ΚΑΘΗΜΕΡΙΝΑ ΓΙΝΕΤΑΙ ΚΑΘΑΡΙΣΜΟΣ ΤΩΝ ΘΑΛΑΜΩΝ
6.3 Πίνακας αποτελεσμάτων των φορτίων που προκύπτουν

Από τους παραπάνω υπολογισμούς προκύπτουν τα εξής φορτία για τον κάθε θάλαμο:

<table>
<thead>
<tr>
<th>ΑΡΙΘΜ. ΘΑΛΑΜΩΝ</th>
<th>ΟΝΟΜΑΣΙΑ ΘΑΛΑΜΩΝ</th>
<th>ΙΣΧΥΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΑΛΑΜΟΣ 1</td>
<td>ΝΩΠΙΑ ΧΟΙΡΙΝΑ</td>
<td>5,40 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 2</td>
<td>ΕΠΕΞΕΡΓΑΣΙΑ ΧΟΙΡΙΝΩΝ</td>
<td>8,10 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 3</td>
<td>ΝΩΠΙΑ ΚΟΤΟΠΟΥΛΑ</td>
<td>5,50 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 4</td>
<td>ΕΠΕΞΕΡΓΑΣΙΑ ΚΟΤΟΠΟΥΛΩΝ</td>
<td>8,10 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 5</td>
<td>ΜΑΡΙΝΑΡΙΣΜΑ ΓΥΡΩΝ ΧΟΙΡ. & ΚΟΤ.</td>
<td>5,90 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 6</td>
<td>ΠΑΡΑΣΚΕΥΗ ΓΥΡΩΝ ΧΟΙΡ. & ΚΟΤ.</td>
<td>1,80 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 7</td>
<td>ΦΟΡΜΕΣ ΣΟΥΒΛΑΚΙΑ ΧΟΙΡ. & ΚΟΤ.</td>
<td>19,00 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 8</td>
<td>ΚΟΠΗ & ΣΥΣΚΕΥΑΣΙΑ ΣΟΥΒΛΑΚΙΩΝ</td>
<td>4,90 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 9</td>
<td>ΤΟΥΝΕΛ</td>
<td>15,23 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 10</td>
<td>ΚΑΤΑΨΥΞΗ ΕΤΟΙΜΩΝ ΧΟΙΡ. & ΚΟΤ.</td>
<td>8,60 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 11</td>
<td>ΣΥΝΤΗΡΗΣΗ ΕΤΟΙΜΩΝ ΣΥΣΚ. ΧΟΙΡΙΝΩΝ</td>
<td>4,90 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 12</td>
<td>ΣΥΝΤΗΡΗΣΗ ΕΤΟΙΜΩΝ ΣΥΣΚ. ΚΟΤΟΠ.</td>
<td>5,90 kW</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 13</td>
<td>ΔΙΑΔΡΟΜΟΣ</td>
<td>18,60 kW</td>
</tr>
</tbody>
</table>

Τα φορτία αυτά θα κατανεμηθούν όπως φαίνεται στον παρακάτω πίνακα, ώστε να έχουμε το καλύτερο αποτέλεσμα.

<table>
<thead>
<tr>
<th>ΑΡΙΘΜ. ΘΑΛΑΜΩΝ</th>
<th>ΑΠΑΙΤΟΥΜΕΝΗ ΣΧΥΣ (kW)</th>
<th>ΕΠΙΛΟΓΗ ΣΥΜΠΙΕΣΤΩΝ</th>
<th>ΙΣΧΥΣ (kW) ΜΟΝΑΔΑΣ ΣΥΜΠΙΕΣΤΩΝ ΠΟΥ ΕΠΙΛΕΞΤΗΣΕΜΕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΑΛΑΜΟΣ 9</td>
<td>15,23</td>
<td>1 ΣΥΜΠΙΕΣΤΗΣ (soft starter)</td>
<td>15,24</td>
</tr>
<tr>
<td>(ΤΟΥΝΕΛ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΣ 10</td>
<td>8,60</td>
<td>2 ΣΥΜΠΙΕΣΤΕΣ (soft starter)</td>
<td>4,77</td>
</tr>
<tr>
<td>(ΚΑΤΑΨΥΞΗ ΕΤΟΙΜΩΝ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΙ 1,3,5,7,11,12 (ΣΥΝΤΗΡΗΣΕΙΣ)</td>
<td>46,60</td>
<td>3 ΣΥΜΠΙΕΣΤΕΣ (ο 1ος inverter)</td>
<td>16,60</td>
</tr>
<tr>
<td>ΘΑΛΑΜΟΙ 2,4,6,8,13 (ΚΛΙΜΑΤΙΣΜΟΣ)</td>
<td>41,50</td>
<td>3 ΣΥΜΠΙΕΣΤΕΣ (ο 1ος inverter)</td>
<td>14,16</td>
</tr>
</tbody>
</table>
ΕΠΙΛΕΞΑΜΕ ΤΟΥΣ ΣΥΜΠΙΕΣΤΕΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ BITZER (SOFTWARE 6.9).

ΕΠΙΛΕΞΑΜΕ ΤΟΥΣ ΕΞΑΤΜΙΣΤΕΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ GUNTNER (GPC.EU 2018).

ΕΠΙΛΕΞΑΜΕ ΤΟΥΣ ΣΥΜΠΥΚΝΩΤΕΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ GUNTNER (GPC.EU 2018).

▽ Η ΠΑΡΟΥΣΙΑΣΗ ΠΑΡΑΚΑΤΩ ΘΑ ΕΙΝΑΙ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΟΠΟΣ ΕΧΟΥΜΕ ΧΩΡΙΣΕΙ ΤΟΥΣ ΘΑΛΑΜΟΥΣ ΣΕ 4 ΚΥΚΛΩΜΑΤΑ, ΟΠΟΤΕ ΜΕΤΑ ΑΠΟ ΚΑΘΕ ΣΥΜΠΙΕΣΤΗ ΘΑ ΠΑΡΟΥΣΙΑΖΟΝΤΑΙ ΚΑΙ ΟΙ ΕΞΑΤΜΙΣΤΕΣ ΠΟΥ ΑΝΗΚΟΥΝ ΣΕ ΑΥΤΟΝ, ΤΟ ΙΔΙΟ ΚΑΙ ΜΕ ΤΟΥΣ ΣΥΜΠΥΚΝΩΤΕΣ ΚΑΙ ΥΣΤΕΡΑ ΘΑ ΠΗΓΑΙΝΟΥΜΕ ΣΤΟ ΕΠΟΜΕΝΟ ΜΗΧΑΝΟΣΤΑΣΙΟ
7.1 Μηχανοστάσιο Τούνελ

ΤΟΥΝΕΛ

1 συμπίεσης
7.1.1 Συμπιεστής (Soft Starter)

ΣΥΜΠΙΕΣΤΗΣ ΤΟΥΝΕΛ

Ο συμπιεστής που επιλέγουμε γι’ αυτό το κύκλωμα θα λειτουργεί με φρέον R-404. Είναι παλινδρομικός ημίκλειστου τύπου και είναι 2 στάδιων, δηλαδή έχουμε δύο κυλίνδρους σε σειρά, όπου το αέριο χαμηλής πίεσης που έρχεται από τον εξατμιστή πηγάνει στην αναρρόφηση του πρώτου κυλίνδρου και από την κατάθλιψη του πρώτου πηγάνει στην αναρρόφηση του δεύτερου κυλίνδρου και ύστερα το καταθλίβει προς τον συμπυκνωτή. Αυτό το κάνουμε γιατί έχουμε μεγάλη διαφορά πίεσεων στην αναρρόφηση και στην κατάθλιψη του και δεν θα είχαμε μεγάλη απόδοση όπως τώρα. Οι βαλβίδες ελέγχου ροής αερίου και βαλβίδες εργασίας είναι ειδικά προσαρμοσμένες για εφαρμογές χαμηλής θερμοκρασίας. Επίσης ο συμπιεστής θα είναι soft starter, δηλαδή θα κάνει ομαλή εκκίνηση για να έχουμε χαμηλότερη κατανάλωση ρεύματος.

Η επιλογή του συμπιεστή γίνεται με την βοήθεια του προγράμματος της BITZER και για τον υπολογισμό του χρειάζεται να συμπληρώσουμε κάποια στοιχεία στο πρόγραμμα.

Αυτά είναι:

- Τα kW που χρειάζεται να καλύψουμε
- Την θερμοκρασία εξάτμισης (την υπολογίζουμε με Δθ = 7 °C με αρνητικό πρόσημο σε σχέση με την θερμοκρασία που χρειαζόμαστε στον θάλαμο)
- Την θερμοκρασία συμπύκνωσης (την υπολογίζουμε με Δθ = 10 °C με θετικό πρόσημο με βάση την θερμοκρασία του περιβάλλοντος)
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Με αυτόν τον τρόπο το πρόγραμμα μας προτείνει τον κατάλληλο συμπιεστή για τις ανάγκες μας, βάση τον συμπιεστών που υπάρχουν στην αγορά.

Ο συμπιεστής που επιλέγουμε παρουσιάζεται στον παρακάτω πίνακα καθώς και κάποια από τα χαρακτηριστικά του.

ΠΙΝΑΚΑΣ 7.10

<table>
<thead>
<tr>
<th>ΣΥΜΠΙΕΣΤΗΣ (2 ΣΤΑΔΙΩΝ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΕΞΑΤΜΙΣΤΗ</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
</tr>
<tr>
<td>COP/EER</td>
</tr>
<tr>
<td>ΙΣΧΥΣ</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ(400V)</td>
</tr>
<tr>
<td>ΔΙΑΚΥΜΑΝΣΗ ΤΑΣΗΣ</td>
</tr>
</tbody>
</table>
Για την επιλογή του εξατμιστή χρησιμοποιούμε το πρόγραμμα της GUNTNER. Για να μας επιλέξει τον κατάλληλο εξατμιστή πρέπει να συμπληρώσουμε στα πεδία που έχει τις ανάγκες του χώρου.

Αυτές είναι:

- Η θερμοκρασία του χώρου που θέλουμε να έχουμε
- Τα kW που χρειάζεται να καλύψουμε
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
- Τρόπος απόψυξης που θέλουμε να έχουμε
- Τύπος ανεμιστήρων (οι ανεμιστήρες που επιλέγουμε είναι AC FAN)
Ο εξατμιστής που επιλέγεται για τις απαιτήσεις μας παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του.

ΠΙΝΑΚΑΣ 7.11

<table>
<thead>
<tr>
<th>ΕΞΑΤΜΙΣΤΗΣ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>GFN 050C/210-E</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>16,10 kW</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
<td>-43,00 °C</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>AC FAN</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>2</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>1340 min⁻¹</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>86 dB(A)</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>1,50 A</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>400 V</td>
</tr>
</tbody>
</table>
Ο συμπυκνωτής που θα χρησιμοποιήσουμε ονομάζεται αδιαβατικός συμπυκνωτής. Ο τρόπος λειτουργίας του συγκεκριμένου συμπυκνωτή είναι πολύ απλός, αναλυτικότερα έχουμε έναν αερόψυκτο συμπυκνωτή όπου στην επιφάνεια που εισέρχεται ο αέρας για να ψύξει το στοιχείο, εκεί πριν το στοιχείο τοποθετείτε ένα μπλοκ πορώδους υλικού το οποίο είναι εμποτισμένο με νερό και έχει ως αποτέλεσμα να αφαιρεί θερμότητα από τον αέρα, έτσι επιτυγχάνουμε χαμηλότερες θερμοκρασίες συμπύκνωσης. Τα πλεονέκτημα του είναι ότι:

- δεν χρειάζεται να επεξεργαστούμε το νερό, απλά συνδέουμε την παροχή
- δεν χρειάζεται συντήρηση
- σε περίπτωση ξηρής λειτουργίας εξασφαλίζει την κανονική αποστράγγιση της μονάδας
Στην εικόνα παρακάτω φαίνεται ο τρόπος λειτουργίας του

Για την επιλογή του συμπυκνωτή χρησιμοποιούμε ξανά το πρόγραμμα της GUNTNER. Για να μας επιλέξει τον κατάλληλο συμπυκνωτή πρέπει να συμπληρώσουμε στα πεδία που έχει τις ανάγκες του χώρου.

Αυτές είναι:

- Η θερμοκρασία του αέρα περιβάλλοντος
- Την υγρασία του αέρα περιβάλλοντος
- Τα kW που χρειάζεται να καλύψουμε
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
- Την θερμοκρασία συμπύκνωσης
- Τύπος ανεμιστήρων (οι ανεμιστήρες που επιλέγουμε είναι EC FAN δηλαδή ρυθμίζουμε τις στροφές τους)
Ο συμπυκνωτής που επιλέγεται για τις απαιτήσεις μας, παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του.

ΠΙΝΑΚΑΣ 7.12

<table>
<thead>
<tr>
<th>ΜΟΝΤΕΛΟ</th>
<th>GCDC RP 063.1/11-32</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>31,80</td>
<td>kW</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ</td>
<td>50,00</td>
<td>ºC</td>
</tr>
<tr>
<td>ΣΥΜΠΥΚΝΩΣΗΣ</td>
<td>EC FAN</td>
<td>-</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>695</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>63</td>
<td>dB(A)</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>0.90</td>
<td>Α</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230</td>
<td>V</td>
</tr>
</tbody>
</table>
7.2 Μηχανοστάσιο Κατάψυξης

ΚΑΤΑΨΥΞΗ

2 συμπίεστες
7.2.1 Συμπιεστές (Soft Starter)

ΣΥΜΠΙΕΣΤΕΣ ΚΑΤΑΨΥΞΗΣ

Το κύκλωμα της κατάψυξης θα το λειτουργήσουμε και αυτό με φρέον R-404A. Οι συμπιεστές μας θα είναι παλινδρομικοί ημίκλειστου τύπου. Ο λόγος που χρησιμοποιούμε 2 συμπιεστές και όχι έναν, είναι για να μπορέσουμε να συντηρήσουμε τα κατεψυγμένα προϊόντα μας σε μια στιγμή βλάβης κάποιου εκ των δύο συμπιεστών, μέχρι να γίνει η αντικατάστασή του. Επίσης οι συμπιεστές θα είναι soft starter, δηλαδή θα κάνουμε ομαλή εκκίνηση για να έχουμε χαμηλότερη κατανάλωση ρεύματος.

Η επιλογή του συμπιεστή γίνεται με την βοήθεια του προγράμματος της BITZER όπως και στο τούνελ και για τον υπολογισμό του χρειάζεται να συμπληρώσουμε κάποια στοιχεία στο πρόγραμμα. Αυτά είναι:

- Τα kW που χρειάζεται να καλύψουμε
- Την θερμοκρασία εξάτμισης (την υπολογίζουμε με $\Delta \theta = 7^\circ C$ με αρνητικό πρόσημο σε σχέση με την θερμοκρασία που χρειαζόμαστε στον θάλαμο)
- Την θερμοκρασία συμπύκνωσης (την υπολογίζουμε με $\Delta \theta = 10^\circ C$ με θετικό πρόσημο με βάση την θερμοκρασία του περιβάλλοντος)
- Το φρέον που θέλουμε να χρησιμοποιήσουμε

Με αυτόν τον τρόπο το πρόγραμμα μας προτείνει τον κατάλληλο συμπιεστή για τις ανάγκες μας, βάση τον συμπιεστών που υπάρχουν στην αγορά.
Οι συμπιεστές που επιλέγουμε παρουσιάζονται στον παρακάτω πίνακα καθώς και κάποια από τα χαρακτηριστικά τους

ΠΙΝΑΚΑΣ 7.13

<table>
<thead>
<tr>
<th>ΣΥΜΠΙΕΣΤΕΣ (SOFT STARTER)</th>
<th>1ος Συμπιεστής</th>
<th>2ος Συμπιεστής</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>4DES-5Y</td>
<td>4DES-5Y</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>4,77</td>
<td>4,77</td>
<td>9,54</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΕΞΑΤΜΙΣΤΗ</td>
<td>4,77</td>
<td>4,77</td>
<td>9,54</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>8,89</td>
<td>8,89</td>
<td>17,78</td>
</tr>
<tr>
<td>COP/EER</td>
<td>1,16</td>
<td>1,16</td>
<td>-</td>
</tr>
<tr>
<td>ΙΣΧΥΣ</td>
<td>4,12</td>
<td>4,12</td>
<td>8,24</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ(400V)</td>
<td>7,71</td>
<td>7,71</td>
<td>14,42</td>
</tr>
<tr>
<td>ΔΙΑΚΥΜΑΝΣΗ ΤΑΣΗΣ</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>-</td>
</tr>
</tbody>
</table>
Για την επιλογή του εξατμιστή της κατάψυξης θα κάνουμε την ίδια διαδικασία με πριν, δηλαδή μέσω του προγράμματος της GUNTNER. Για να μας επιλέξει τον κατάλληλο εξατμιστή πρέπει να συμπληρώσουμε ότι προαναφέραμε στον υπολογισμό του τούνελ. Δηλαδή:

- Τη θερμοκρασία του χώρου που θέλουμε να έχουμε
- Τα kW που χρειάζεται να καλύψουμε
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
- Τρόπος απόψυξης που θέλουμε να έχουμε
- Τύπος ανεμιστήρων (οι ανεμιστήρες που επιλέγουμε είναι EC FAN δηλαδή ρυθμίζουμε τις στροφές τους ανάλογα με τις συνθήκες που θέλουμε να δημιουργήσουμε στο χώρο σε συνεργασία με την ηλεκτρονική εκτονωτική μας)
Ο εξατμιστής που επιλέγεται για τις απαιτήσεις μας παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του

ΠΙΝΑΚΑΣ 7.14

<table>
<thead>
<tr>
<th>ΕΞΑΤΜΙΣΤΗΣ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>GACC RX 031.1/3-70.E</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>9,80 kW</td>
</tr>
<tr>
<td>ΨΥΚΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
<td>-28,00 °C</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>3</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>1350 min⁻¹</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>67 dB(A)</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>0,70 A</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230 V</td>
</tr>
</tbody>
</table>
7.2.3 Συμπυκνωτής

ΣΥΜΠΥΚΝΩΤΗΣ ΚΑΤΑΨΥΞΗΣ

Θα χρησιμοποιήσουμε πάλι αδιαβατικό συμπυκνωτή όπως το προηγούμενο κύκλωμα. Η διαδικασία της λειτουργίας του είναι η ίδια. Επίσης και αυτός θα είναι με ανεμιστήρες EC FAN για να μπορούμε να ρυθμίζουμε τις στροφές του ανεμιστήρα.

Όπως είπαμε τα στοιχεία που πρέπει να γνωρίζουμε είναι:

- Η θερμοκρασία του αέρα περιβάλλοντος
- Την υγρασία του αέρα περιβάλλοντος
- Τα kW που χρειάζεται να καλύψουμε
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
- Την θερμοκρασία συμπύκνωσης
- Τύπος ανεμιστήρων (οι ανεμιστήρες που επιλέγουμε είναι EC FAN δηλαδή ρυθμίζουμε τις στροφές τους)

Α.Τ.Ε.Ι. ΚΡΗΤΗΣ – ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
Ο συμπυκνωτής που επιλέγεται για τις απαιτήσεις μας, παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του.

ΠΙΝΑΚΑΣ 7.15

<table>
<thead>
<tr>
<th>ΜΟΝΤΕΛΟ</th>
<th>GCDC RP 063.1/11-32</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>22,20 kW</td>
<td></td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>50,00 °C</td>
<td></td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
<td>-</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>425 min⁻¹</td>
<td></td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>52 dB(A)</td>
<td></td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>0,25 A</td>
<td></td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230 V</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Μηχανοστάσιο Συντηρήσεων

ΣΥΝΤΗΡΗΣΕΙΣ

3 ΣΥΜΠΙΕΣΤΕΣ
7.3.1 Συμπιεστές (o 1ος inverter)

ΣΥΜΠΙΕΣΤΕΣ
ΣΥΝΤΗΡΗΣΕΩΝ

Στο κύκλωμα των συντηρήσεων θα χρησιμοποιήσουμε επίσης φρέον R-404A. Εδώ έχουμε επιλέξει τρείς παλινδρομικούς συμπιεστές ημίκλειστου τύπου όπου ο 1ος θα είναι inverter. Ο λόγος που επιλέξαμε τρείς είναι για οικονομία ρεύματος.

Όταν έχω τρείς συμπιεστές των 16,60 kW μπορούν να μου καλύψουν όλα τα φορτία όταν οι θάλαμοι λειτουργούν όλοι, αν όμως λειτουργεί μόνο ο πιο μικρός θάλαμος που είναι 4,90 kW λειτουργούμε μόνο τον έναν και αφού είναι inverter μπορούμε να τον κατεβάσουμε μέχρι το 32% της απόδοσής του και να το φέρουμε στη ισχύ που χρειαζόμαστε να λειτουργεί, ώστε η κατανάλωση θα είναι πολύ μικρή από το να λειτουργούσαμε έναν ή δυο μεγαλύτερους.
Η λογική της λειτουργίας των συμπιεστών αυτού του κυκλώματος είναι η εξής. Αρχικά θα παίρνει ο 1ος συμπιεστής που είναι inverter, σιγά σιγά ανάλογα την ζήτηση θα ανεβάζει στροφές μέχρι να φτάσει στο 100% ,τότε θα πάρει ο 2ος συμπιεστής και θα λειτουργεί στο 100% αφού δεν είναι inverter ενώ ταυτόχρονα ο 1ος θα ξαναρίχνει την απόδοσή του στο ελάχιστο, στη συνέχεια το ίδιο θα γίνει και με τον 3ο συμπιεστή και θα ξαναφτάσει στο ελάχιστο της απόδοσης του ο 1ος με αποτέλεσμα αν έχουμε την μέγιστη ζήτηση θα φτάσει και αυτός στο 100% της απόδοσής του.

Οι συμπιεστές αυτοί επιλέχθηκαν όπως και οι προηγούμενοι, δηλαδή με το πρόγραμμα της BITZER. Τα στοιχεία που πρέπει να γνωρίζουμε για να έχουμε μια σωστή επιλογή συμπιεστή είναι τα ίδια με πριν, δηλαδή :

- Τα kW που χρειάζεται να καλύψουμε
- Την θερμοκρασία εξάτμισης (την υπολογίζουμε με Δθ = 7°C με αρνητικό πρόσημο σε σχέση με την θερμοκρασία που χρειαζόμαστε στον θάλαμο)
- Την θερμοκρασία συμπύκνωσης (την υπολογίζουμε με Δθ = 10°C με θετικό πρόσημο με βάση την θερμοκρασία του περιβάλλοντος)
- Το φρέον που θέλουμε να χρησιμοποιήσουμε

ΠΙΝΑΚΑΣ 7.16

<table>
<thead>
<tr>
<th>ΣΥΜΠΙΕΣΤΕΣ (1ος inverter)</th>
<th>1ος Συμπιεστής</th>
<th>2ος Συμπιεστής</th>
<th>3ος Συμπιεστής</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>4BES-9Y</td>
<td>4BES-9Y</td>
<td>4BES-9Y</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>16,60</td>
<td>16,60</td>
<td>16,60</td>
<td>48 kW</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΕΞΑΤΜΙΣΤΗ</td>
<td>16,60</td>
<td>16,60</td>
<td>16,60</td>
<td>48 kW</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>25,60</td>
<td>25,60</td>
<td>25,60</td>
<td>76,80 kW</td>
</tr>
<tr>
<td>COP/EER</td>
<td>1,84</td>
<td>1,84</td>
<td>1,84</td>
<td>-</td>
</tr>
<tr>
<td>ΣΥΧΥΣ</td>
<td>9,04</td>
<td>9,04</td>
<td>9,04</td>
<td>27,12 kW</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ(400V)</td>
<td>15,21</td>
<td>15,21</td>
<td>15,21</td>
<td>45,63 A</td>
</tr>
<tr>
<td>ΔΙΑΚΥΜΑΝΣΗ ΤΑΣΗΣ</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>- V</td>
</tr>
</tbody>
</table>
7.3.2 Εξατμιστές

ΕΞΑΤΜΙΣΤΕΣ
ΣΥΝΤΗΡΗΣΕΩΝ
Για την επιλογή των εξατμιστών των συντηρήσεων θα κάνουμε την ίδια διαδικασία με πριν, δηλαδή μέσω του προγράμματος της GUNTNER. Για να μας επιλέξει τον κατάλληλο εξατμιστή πρέπει να συμπληρώσουμε ότι προαναφέραμε στον υπολογισμό του τούνελ. Δηλαδή :

- Τη θερμοκρασία του χώρου που θέλουμε να έχουμε
- Τα kW που χρειάζεται να καλύψουμε
- Το φρέον που θέλουμε να χρησιμοποιήσουμε
- Τρόπος απόψυξης που θέλουμε να έχουμε
- Τύπος ανεμιστήρων (οι ανεμιστήρες που επιλέγουμε είναι EC FAN όπως και οι προηγούμενοι)

Επίσης πρέπει να αναφέρουμε ότι στους θάλαμους 1,3 & 5 θα χρησιμοποιήσουμε εξατμιστές άλλου τύπου. Οι εξατμιστές αυτοί θα είναι πλάγιοι από τη μία πλευρά, όπως φαίνεται στην φωτογραφία της προηγούμενης σελίδας και αντί να ρουφάνε αέρα από το στοιχείο, θα σπρώχνουν τον αέρα προς αυτό, αυτό πρέπει να γίνεται για να έχουμε μικρότερη ταχύτητα του αέρα ώστε να μην μαυρίζουν τα κρέατα.

ΠΙΝΑΚΑΣ 7.17

<table>
<thead>
<tr>
<th>ΕΞΑΤΜΙΣΤΕΣ (ΜΕ ΑΝΑΠΟΔΗ ΦΟΡΑ ΑΕΡΑ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΑΛΑΜΟΣ 1</td>
</tr>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
</tr>
</tbody>
</table>
ΠΙΝΑΚΑΣ 7.18

ΤΑΜΕΙΟ ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ

<table>
<thead>
<tr>
<th>ΘΑΛΑΜΟΣ 7</th>
<th>ΘΑΛΑΜΟΣ 11</th>
<th>ΘΑΛΑΜΟΣ 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOONΑLΟ</td>
<td>GACC RX 050.1/3-70.E</td>
<td>GACC RX 031.1/2-70.E</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>24,20</td>
<td>4,90</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
<td>-11,00</td>
<td>-8,00</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
<td>EC FAN</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>2,20</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Στους Πίνακες 7.17 & 7.18 παρουσιάζονται οι εξατμιστές που επιλέχθηκαν για κάθε θάλαμο ξεχωριστά και μερικά χαρακτηριστικά τους.
7.3.3 Συμπυκνωτής

ΣΥΜΠΥΚΝΩΤΗΣ
ΣΥΝΤΗΡΗΣΕΩΝ

Ο συμπυκνωτής που θα καλύψει τις ανάγκες των συντηρήσεων θα είναι και αυτός αδιαβατικός με EC FAN και θα υπολογιστεί όπως υπολογίστηκαν και οι υπόλοιποι, δηλαδή με την βοήθεια του προγράμματος της GUNTNER.
Ο συμπυκνωτής που επιλέγεται για τις απαιτήσεις μας, παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του

ΠΙΝΑΚΑΣ 7.19

<table>
<thead>
<tr>
<th>ΜΟΝΤΕΛΟ</th>
<th>GCDC RP 080.1/11-49</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>83,50 kW</td>
<td>-</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΣΥΜΠΥΚΝΩΣΗ</td>
<td>50,00 °C</td>
<td>-</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
<td>-</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>890 min⁻¹</td>
<td>-</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>80 dB(A)</td>
<td>-</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>4,00 A</td>
<td>-</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>400 V</td>
<td>-</td>
</tr>
</tbody>
</table>
7.4 Μηχανοστάσιο Κλιματισμού
ΣΥΜΠΙΕΣΤΕΣ
ΚΛΙΜΑΤΙΣΜΟΥ

Οι συμπιεστές για τον κλιματισμό είναι τρείς παλινδρομικοί, ημίκλειστου τύπου και ο 1ος inverter. Ο λόγος είναι ίδιος που ισχύει και για τους συμπιεστές των συντηρήσεων, δηλαδή για να μπορούν να καλύψουν τον μικρότερο θάλαμο όταν λειτουργεί μόνος του, χωρίς να έχουμε μεγάλη κατανάλωση. Επίσης ο τρόπος που θα λειτουργούν είναι και αυτός ίδιος με τον τρόπο που εξηγήσαμε στους συμπιεστές των συντηρήσεων.
Οι συμπιεστές που επιλέγουμε παρουσιάζονται στον παρακάτω πίνακα καθώς και κάποια από τα χαρακτηριστικά τους

ΠΙΝΑΚΑΣ 7.20

<table>
<thead>
<tr>
<th></th>
<th>1ος Συμπιεστής</th>
<th>2ος Συμπιεστής</th>
<th>3ος Συμπιεστής</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>4EES-4Y</td>
<td>4EES-4Y</td>
<td>4EES-4Y</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>14,16</td>
<td>14,16</td>
<td>14,16</td>
<td>42,48 kW</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΕΞΑΤΜΙΣΤΗ</td>
<td>14,16</td>
<td>14,16</td>
<td>14,16</td>
<td>42,48 kW</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ</td>
<td>20,70</td>
<td>20,70</td>
<td>20,70</td>
<td>62,10 kW</td>
</tr>
<tr>
<td>COP/EER</td>
<td>2,17</td>
<td>2,17</td>
<td>2,17</td>
<td>-</td>
</tr>
<tr>
<td>ΙΣΧΥΣ</td>
<td>6,52</td>
<td>6,52</td>
<td>6,52</td>
<td>19,56 kW</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ(400V)</td>
<td>10,75</td>
<td>10,75</td>
<td>10,75</td>
<td>32,25 A</td>
</tr>
<tr>
<td>ΔΙΑΚΥΜΑΝΣΗ ΤΑΣΗΣ</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>- V</td>
</tr>
</tbody>
</table>
ΕΞΑΤΜΙΣΤΕΣ
ΚΛΙΜΑΤΙΣΜΟΥ

Οι εξατμιστές που θα χρησιμοποιηθούν στον χώρο του κλιματισμού θα είναι διαφορετικοί από αυτούς που χρησιμοποιήσαμε στους υπόλοιπους υπόλοιπους υπολογίσμους. Όπως φαίνεται και στην εικόνα παραπάνω ο εξατμιστής έχει δυο μικρά στοιχεία, ένα στα δεξιά και ένα στα αριστερά του, έτσι οι ανεμιστήρες ρουφάνε τον αέρα από τον χώρο και τον ρίχνουν πάνω στα δύο στοιχεία. Αυτό το κάνουμε για έχουμε μικρή ταχύτητα του αέρα μέσα στο χώρο, ώστε να μην ενοχλεί τους ανθρώπους που δουλεύουν εκεί μέσα.
Η επιλογή των εξατμιστών έγινε με τον ίδιο τρόπο, που επιλέξαμε και τους υπόλοιπους. Δηλαδή βάση του προγράμματος της GUNTNER.
ΕΞΑΤΜΙΣΤΕΣ

<table>
<thead>
<tr>
<th>ΜΟΝΤΕΛΟ</th>
<th>ΘΑΛΑΜΟΣ 2</th>
<th>ΘΑΛΑΜΟΣ 4</th>
<th>ΘΑΛΑΜΟΣ 6</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>GASDC RX 035.1/2-40.E</td>
<td>GASDC RX 035.1/2-40.E</td>
<td>GADC RX 035.1/1-70.E</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
<td>R-404A</td>
<td>-</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>8,60</td>
<td>8,60</td>
<td>2,20</td>
<td>kW</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>°C</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
<td>EC FAN</td>
<td>EC FAN</td>
<td>-</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>1310</td>
<td>1310</td>
<td>535</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>65</td>
<td>65</td>
<td>45</td>
<td>dB(A)</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>0,98</td>
<td>0,98</td>
<td>0,18</td>
<td>A</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>V</td>
</tr>
</tbody>
</table>
ΠΙΝΑΚΑΣ 7.22

<table>
<thead>
<tr>
<th></th>
<th>ΘΑΛΑΜΟΣ 8</th>
<th>ΘΑΛΑΜΟΣ 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΜΟΝΤΕΛΟ</td>
<td>GASDC RX 035.1/1-40.E</td>
<td>GASDC RX 035.1/2-40.E</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΜΕΣΟ</td>
<td>R-404A</td>
<td>R-404A</td>
</tr>
<tr>
<td>ΨΥΚΤΙΚΟ ΦΟΡΤΙΟ</td>
<td>5,10</td>
<td>10,10</td>
</tr>
<tr>
<td>ΘΕΡΜΟΚΡΑΣΙΑ ΕΞΑΤΜΙΣΗΣ</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>EC FAN</td>
<td>EC FAN</td>
</tr>
<tr>
<td>ΑΡΙΘΜΟΣ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ</td>
<td>1310</td>
<td>1310</td>
</tr>
<tr>
<td>ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>0,98</td>
<td>0,98</td>
</tr>
<tr>
<td>ΤΑΣΗ ΡΕΥΜΑΤΟΣ</td>
<td>230</td>
<td>230</td>
</tr>
</tbody>
</table>

Στους Πίνακες 7.21 & 7.22 παρουσιάζονται οι εξατμιστές που επιλέχθηκαν για κάθε χώρο έξεγωρίας και μερικά χαρακτηριστικά τους.
ΣΥΜΠΥΚΝΩΤΗΣ ΚΛΙΜΑΤΙΣΜΟΥ

Ο συμπυκνωτής που θα καλύψει τις ανάγκες του κλιματισμού θα είναι και αυτός αδιαβατικός με EC FAN και θα υπολογιστεί όπως υπολογίστηκαν και οι υπόλοιποι, δηλαδή με την βοήθεια του προγράμματος της GUNTNER.
Ο συμπυκνωτής που επιλέγεται για τις απαιτήσεις μας, παρουσιάζεται στον παρακάτω πίνακα μαζί με κάποια χαρακτηριστικά του.

ΠΙΝΑΚΑΣ 7.23

ΜΟΝΤΕΛΟ	GCDC RP 080.1/11-52	-
ΨΥΚΤΙΚΟ ΜΕΣΟ	R-404A	-
ΦΟΡΤΙΟ ΣΥΜΠΥΚΝΩΤΗ	79,80 kW	-
ΘΕΡΜΟΚΡΑΣΙΑ ΣΥΜΠΥΚΝΩΣΗΣ	50,00 ºC	-
ΤΥΠΟΣ ΑΝΕΜΙΣΤΗΡΩΝ	EC FAN	-
ΤΑΧΥΤΗΤΑ ΑΝΕΜΙΣΤΗΡΩΝ	1000 min⁻¹	-
ΕΠΙΠΕΔΟ ΘΟΡΥΒΟΥ	52 dB(A)	-
ΕΝΤΑΣΗ ΡΕΥΜΑΤΟΣ	3 A	-
ΤΑΣΗ ΡΕΥΜΑΤΟΣ	400 V	-
7.5 Μηνιαίες καταναλώσεις

Στον παρακάτω πίνακα έχουμε υπολογίσει τις μηνιαίες καταναλώσεις του κάθε κυκλώματος. Ο υπολογισμός έγινε βάση των απαιτούμενων ψυκτικών φορτίων του κάθε κυκλώματος καθώς και το πόσες ώρες μέσα στην μέρα χρειάζεται να λειτουργήσει το σύστημα μας για να τα καλύψει.

ΠΙΝΑΚΑΣ 7.24

<table>
<thead>
<tr>
<th>ΜΗΝΑΣ</th>
<th>ΜΕΓΙΣΤΕΣ ΘΕΡΜΟΚΡΑΣΙΕΣ (°C)</th>
<th>ΤΟΥΝΕΛ (kW)</th>
<th>ΚΑΤΑΨΥΞΗ (kW)</th>
<th>ΣΥΝΤΗΡΗΣΕΙΣ (kW)</th>
<th>ΚΛΙΜΑΤΙΣΜΟΣ (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΙΑΝΟΥΑΡΙΟΣ</td>
<td>14,5</td>
<td>2,613.62</td>
<td>1,241.90</td>
<td>5,528.70</td>
<td>2,343.87</td>
</tr>
<tr>
<td>ΦΕΒΡΟΥΑΡΙΟΣ</td>
<td>14,8</td>
<td>2,494.15</td>
<td>1,182.76</td>
<td>5,085.22</td>
<td>2,232.26</td>
</tr>
<tr>
<td>ΜΑΡΤΙΟΣ</td>
<td>17,0</td>
<td>2,622.34</td>
<td>1,241.90</td>
<td>5,528.70</td>
<td>2,343.87</td>
</tr>
<tr>
<td>ΑΠΡΙΛΙΟΣ</td>
<td>21,1</td>
<td>2,741.81</td>
<td>1,486.90</td>
<td>6,149.57</td>
<td>2,806.27</td>
</tr>
<tr>
<td>ΜΑΙΟΣ</td>
<td>26,2</td>
<td>2,870.01</td>
<td>1,554.48</td>
<td>6,386.09</td>
<td>2,933.82</td>
</tr>
<tr>
<td>ΙΟΥΝΙΟΣ</td>
<td>31,2</td>
<td>2,494.15</td>
<td>1,351.72</td>
<td>5,913.04</td>
<td>2,551.15</td>
</tr>
<tr>
<td>ΙΟΥΛΙΟΣ</td>
<td>35,0</td>
<td>2,870.01</td>
<td>1,554.48</td>
<td>6,386.09</td>
<td>2,933.82</td>
</tr>
<tr>
<td>ΑΥΓΟΥΣΤΟΣ</td>
<td>33,5</td>
<td>2,622.34</td>
<td>1,419.31</td>
<td>6,149.57</td>
<td>2,678.71</td>
</tr>
<tr>
<td>ΣΕΠΤΕΜΒΡΗΣ</td>
<td>29,8</td>
<td>2,622.34</td>
<td>1,419.31</td>
<td>6,031.30</td>
<td>2,678.71</td>
</tr>
<tr>
<td>ΟΚΤΩΒΡΗΣ</td>
<td>24,7</td>
<td>2,733.09</td>
<td>1,486.90</td>
<td>6,386.09</td>
<td>2,806.27</td>
</tr>
<tr>
<td>ΝΟΕΜΒΡΗΣ</td>
<td>19,1</td>
<td>2,622.34</td>
<td>1,377.07</td>
<td>5,587.83</td>
<td>2,598.99</td>
</tr>
<tr>
<td>ΔΕΚΕΜΒΡΗΣ</td>
<td>15,4</td>
<td>2,494.15</td>
<td>1,182.76</td>
<td>5,440.00</td>
<td>2,232.26</td>
</tr>
</tbody>
</table>

ΣΥΝΟΛΟ | 31,800.36 | 16,499.48 | 70,572.17 | 31,140.00
ΣΥΜΠΕΡΑΣΜΑΤΑ

Μέσα από αυτή την πτυχιακή μπορούμε να συμπεράνουμε τα παρακάτω:

Όσον αναφορά τα κρέατα, χρειάζεται ιδιαίτερη προσοχή και γνώση των ιδιαιτεροτήτων τους. Το κυριότερο χαρακτηριστικό κάθε κρέατος είναι η περιεχόμενη σε αυτό υγρασία. Αποτελεί καταλυτικό παράγοντα στην ψύξη, στην κατάγυψη καθώς και στη διατήρηση της ποιότητάς του σε υψηλά επίπεδα. Όλες οι θερμοψυχικές ιδιότητες εξαρτώνται από αυτό και το κρέας παρουσιάζει ικανοποιητικούς συντελεστές απορρόφησης της ψύξης, όσο η ποσότητα της υγρασίας παραμένει αμετάβλητη.

Επιπλέον, σημαντικό παράγοντα αποτελεί και ο χώρος αποθήκευσης των κρεάτων, δηλαδή οι ψυκτικοί θάλαμοι. Πρέπει να γίνει μια καλή μελέτη των ψυκτικών φορτίων για να έχουμε την ψύξη που χρειάζεται κάθε θάλαμος. Επίσης, η εξοικονόμηση ενέργειας αποτελεί σημαντικό κριτήριο για το σχεδιασμό μίας εγκατάστασης. Ο κάθε θάλαμος χρειάζεται να τοποθετείται στο χώρο, ώστε να ελαχιστοποιούνται τα φορτία ψύξης του χώρου, καθώς και αυτό των ανανέωσεων αέρα. Η δημιουργία των κλιματιζόμενων διαδρόμων ευνοεί στην μείωση των ψυκτικών φορτίων μέσα στους θαλάμους.

Όσον αφορά την μεταβολή των ψυκτικών φορτίων ανά μήνα, είδαμε ότι στις συντηρήσεις ειδικά έχουμε μεταβολή φορτίων κατά 1.300 kW (Ιουλ.–Φεβ.) που δείχνει ότι έγινε σωστή μελέτη στην επιλογή των συμπιεστών, δηλαδή η χρησιμοποίηση τρεις μικρών αντί για ένα μεγάλο, γιατί θα είχαμε περίσσεια κατανάλωση.

Η τοποθέτηση των μηχανοστασίων θα γίνει σε έναν διαμορφωμένο χώρο, δίπλα από την εγκατάσταση των θαλάμων, όπου θα είναι στεγανός και κλιματιζόμενος, εκτός από τους συμπυκνωτές που θα βρίσκονται στην οροφή του κτιρίου με την σωστή τοποθέτηση των σωληνώσεων του και την μόνωση όσων χρειάζονται.
ΒΙΒΛΙΟΓΡΑΦΙΑ

https://www.jstage.jst.go.jp/article/fstr/19/3/19_375/_pdf

file:///C:/Users/Chris/Downloads/STEG_TEGEP_00424_Medium.pdf

https://books.google.gr/books?id=Xr6hTgLRoLIC&pg=PA9&lpg=PA9&dq=Plank+%CF%84%CE%BF+1941&source=bl&ots=pJn3x7T0-s&sig=zFpRBDNgF2kjjvp-6hZK_tDqTKM&hl=el&sa=X&ved=2ahUKEwjxtfXOgrfdAhVIULAKHeraDp0Q6AEwCnoECAIQAA#v=onepage&q=Plank%20%CF%84%CE%BF%201941&f=false

https://theengineeringmindset.com/cooling-load-calculation-cold-room/

http://arkhonpanel.com/media/files/arkhon-frigo-panel-brochure.pdf

https://www.bitzer.de/gb/en/

https://www.guentner.com/

https://www.ashrae.org/

http://www.opengov.gr/epy/?p=6062

http://www2.hcmuaf.edu.vn/data/ihquang/file/Food%20Freezing/Introduction%20to%20Food%20Freezing_3.ppt

ΠΙΝΑΚΕΣ

Πίνακας 1.2 Λανθάνουσα θερμότητα στερεοποίησης - Qlat

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Προϊόν</th>
<th>Κρέατα</th>
<th>Λανθάνουσα θερμότητα (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Βοδινό στήθος</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Βοδινό σκότι</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Βοδινό πλευρά</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Βοδινό άπαχο</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Βοδινό ψαρονέφρι</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Βοδινή μπριζόλα</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Χοιρινό λιπαρό</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Χοιρινό μπέικον</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Χοιρινή κοιλιά</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Χοιρινό με κόκκαλο</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ζαμπόν άπαχο</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Χοιρινός ώμος</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Λουκάνικο Φρανκφούρτης</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Λουκάνικο Ιταλικό</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Λουκάνικο Πολωνίας</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Λουκάνικο χοιρινό</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Λουκάνικο καπνιστό</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Κοτόπουλο</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Πάπια</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Γαλοπούλα</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Αρνί τεμαχισμένο άπαχο</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Αρνί πόδι άπαχο</td>
<td>248</td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 1.3 Ειδική θερμότητα κρέατων άνω και κάτω της στερεοποίησης τους

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Προϊόν</th>
<th>Ειδική θερμότητα (ΑΝΩ στερεοποίησεως) $\text{Cp}_\text{ΑΝΩ}$ (kJ / kg* °C)</th>
<th>Ειδική θερμότητα (ΚΑΤΩ στερεοποίησεως) $\text{Cp}_\text{ΚΑΤΩ}$ (kJ / kg* °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Βοδινό στήθος</td>
<td>2,76</td>
<td>1,47</td>
</tr>
<tr>
<td>2</td>
<td>Βοδινό συκώτι</td>
<td>3,18</td>
<td>1,63</td>
</tr>
<tr>
<td>3</td>
<td>Βοδινό πλευρά</td>
<td>2,81</td>
<td>1,51</td>
</tr>
<tr>
<td>4</td>
<td>Βοδινό άπαχο</td>
<td>2,34</td>
<td>1,34</td>
</tr>
<tr>
<td>5</td>
<td>Βοδινό ψαρονέφρι</td>
<td>2,64</td>
<td>1,42</td>
</tr>
<tr>
<td>6</td>
<td>Βοδινή μπριζόλα</td>
<td>3,18</td>
<td>1,63</td>
</tr>
<tr>
<td>7</td>
<td>Χοιρινό λιπαρό</td>
<td>1,30</td>
<td>1,00</td>
</tr>
<tr>
<td>8</td>
<td>Χοιρινό μπέικον</td>
<td>1,51</td>
<td>1,05</td>
</tr>
<tr>
<td>9</td>
<td>Χοιρινή κοιλιά</td>
<td>2,76</td>
<td>1,47</td>
</tr>
<tr>
<td>10</td>
<td>Χοιρινό με κόκκαλο</td>
<td>2,6</td>
<td>1,42</td>
</tr>
<tr>
<td>11</td>
<td>Ζαμπόν άπαχο</td>
<td>2,6</td>
<td>1,42</td>
</tr>
<tr>
<td>12</td>
<td>Χοιρινός ώμος</td>
<td>2,47</td>
<td>1,38</td>
</tr>
<tr>
<td>13</td>
<td>Λουκάνικο Φρανκφούρτης</td>
<td>2,89</td>
<td>1,51</td>
</tr>
<tr>
<td>14</td>
<td>Λουκάνικο Ιταλικό</td>
<td>2,97</td>
<td>1,55</td>
</tr>
<tr>
<td>15</td>
<td>Λουκάνικο Πολωνίας</td>
<td>2,97</td>
<td>1,55</td>
</tr>
<tr>
<td>16</td>
<td>Λουκάνικο χοιρινό</td>
<td>2,34</td>
<td>1,34</td>
</tr>
<tr>
<td>17</td>
<td>Λουκάνικο καπνιστό</td>
<td>2,60</td>
<td>1,42</td>
</tr>
<tr>
<td>18</td>
<td>Κοτόπουλο</td>
<td>3,68</td>
<td>1,72</td>
</tr>
<tr>
<td>19</td>
<td>Πάτια</td>
<td>3,22</td>
<td>1,63</td>
</tr>
<tr>
<td>20</td>
<td>Γαλοπούλα</td>
<td>3,00</td>
<td>1,63</td>
</tr>
<tr>
<td>21</td>
<td>Αρνί τεμαχισμένο άπαχο</td>
<td>2,89</td>
<td>1,51</td>
</tr>
<tr>
<td>22</td>
<td>Αρνί πόδι άπαχο</td>
<td>3,06</td>
<td>1,63</td>
</tr>
</tbody>
</table>
Πίνακας 1.4 Θερμική αγωγιμότητα κρεάτων για συνήθεις θερμοκρασίες αποθήκευσης

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Προϊόν</th>
<th>Κρέατα</th>
<th>Τ=-10 °C</th>
<th>Τ=-5 °C</th>
<th>Τ=0 °C</th>
<th>Τ=5 °C</th>
<th>Τ=10 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Βοδινό στήθος</td>
<td>1,201</td>
<td>1,08</td>
<td>0,404</td>
<td>0,409</td>
<td>0,414</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Βοδινό σκιώτι</td>
<td>1,452</td>
<td>1,242</td>
<td>0,475</td>
<td>0,481</td>
<td>0,489</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Βοδινό πλευρά</td>
<td>1,198</td>
<td>1,078</td>
<td>0,403</td>
<td>0,407</td>
<td>0,412</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Βοδινό άπαχο</td>
<td>1,49</td>
<td>1,274</td>
<td>0,484</td>
<td>0,49</td>
<td>0,497</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Βοδινό ψαρονέφρι</td>
<td>1,519</td>
<td>1,387</td>
<td>0,471</td>
<td>0,477</td>
<td>0,484</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Βοδινή μπριζόλα</td>
<td>1,523</td>
<td>1,391</td>
<td>0,473</td>
<td>0,479</td>
<td>0,486</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Χοιρινό λιπαρό</td>
<td>0,306</td>
<td>0,281</td>
<td>0,209</td>
<td>0,209</td>
<td>0,208</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Χοιρινό μπέικον</td>
<td>0,744</td>
<td>0,659</td>
<td>0,304</td>
<td>0,306</td>
<td>0,308</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Χοιρινή κοιλιά</td>
<td>0,842</td>
<td>0,749</td>
<td>0,323</td>
<td>0,325</td>
<td>0,328</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Χοιρινό με κόκκαλο</td>
<td>1,01</td>
<td>0,991</td>
<td>0,379</td>
<td>0,383</td>
<td>0,387</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ζαμπόν άπαχο</td>
<td>1,497</td>
<td>1,369</td>
<td>0,471</td>
<td>0,478</td>
<td>0,485</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Χοιρινός όμος</td>
<td>1,425</td>
<td>1,151</td>
<td>0,479</td>
<td>0,486</td>
<td>0,493</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Λουκάνικο Φρανκφούρτης</td>
<td>1,17</td>
<td>1,003</td>
<td>0,401</td>
<td>0,405</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Λουκάνικο Ιταλικό</td>
<td>1,136</td>
<td>1,023</td>
<td>0,388</td>
<td>0,392</td>
<td>0,397</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Λουκάνικο Πολωνίας</td>
<td>1,182</td>
<td>1,063</td>
<td>0,398</td>
<td>0,402</td>
<td>0,406</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Λουκάνικο χοιρινό</td>
<td>1,005</td>
<td>0,898</td>
<td>0,359</td>
<td>0,363</td>
<td>0,366</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Λουκάνικο καπνιστό</td>
<td>0,862</td>
<td>0,771</td>
<td>0,349</td>
<td>0,352</td>
<td>0,356</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Κοτόπουλο</td>
<td>1,235</td>
<td>0,924</td>
<td>0,449</td>
<td>0,454</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Πάπια</td>
<td>1,536</td>
<td>1,415</td>
<td>0,472</td>
<td>0,478</td>
<td>0,485</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Γαλοπούλα</td>
<td>1,536</td>
<td>1,415</td>
<td>0,472</td>
<td>0,478</td>
<td>0,485</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Αρνί τεμαχισμένο άπαχο</td>
<td>1,479</td>
<td>1,237</td>
<td>0,485</td>
<td>0,491</td>
<td>0,498</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Αρνί πόδι άπαχο</td>
<td>1,608</td>
<td>1,481</td>
<td>0,487</td>
<td>0,494</td>
<td>0,501</td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 1.5 Συντελεστής επιφανειακής μεταφοράς θερμότητας κρεάτων για συνήθεις θερμοκρασίες αποθήκευσης

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Προϊόν</th>
<th>Μέσο ψύξης</th>
<th>h (W/m² * °C)</th>
<th>Πηγή</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Βοδινό στήθος</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>2</td>
<td>Βοδινό συκώτι</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>3</td>
<td>Βοδινό πλευρά</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>4</td>
<td>Βοδινό άπαχο</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>5</td>
<td>Βοδινό ψαρονέφρι</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>7</td>
<td>Χοιρινό λιπαρό</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>8</td>
<td>Χοιρινό μπέικον</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>9</td>
<td>Χοιρινή κοιλιά</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>10</td>
<td>Χοιρινό με κόκκαλο</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>12</td>
<td>Χοιρινός ώμος</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>15</td>
<td>Λουκάνικο Πολωνίας</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>17</td>
<td>Λουκάνικο καπνιστό</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>18</td>
<td>Κοτόπουλο</td>
<td>αέρας</td>
<td>43</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>19</td>
<td>Πάπια</td>
<td>αέρας</td>
<td>43</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>20</td>
<td>Γαλόπουλα</td>
<td>αέρας</td>
<td>43</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>21</td>
<td>Αρνί τεμαχισμένο άπαχο</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
<tr>
<td>22</td>
<td>Αρνί πόδι άπαχο</td>
<td>αέρας</td>
<td>45</td>
<td>Becker and Fricke (2004)</td>
</tr>
</tbody>
</table>
ΚΑΤΟΨΗ ΘΑΛΑΜΩΝ

Θερμοκρασία εδάφους 16 °C
Θερμοκρασία περιβάλλοντος 35 °C / 60 %